Journal of Nonlinear Science

, Volume 27, Issue 4, pp 1121–1154 | Cite as

Locomotion Dynamics for Bio-inspired Robots with Soft Appendages: Application to Flapping Flight and Passive Swimming

  • Frédéric Boyer
  • Mathieu Porez
  • Ferhat Morsli
  • Yannick Morel
Article
  • 385 Downloads

Abstract

In animal locomotion, either in fish or flying insects, the use of flexible terminal organs or appendages greatly improves the performance of locomotion (thrust and lift). In this article, we propose a general unified framework for modeling and simulating the (bio-inspired) locomotion of robots using soft organs. The proposed approach is based on the model of Mobile Multibody Systems (MMS). The distributed flexibilities are modeled according to two major approaches: the Floating Frame Approach (FFA) and the Geometrically Exact Approach (GEA). Encompassing these two approaches in the Newton–Euler modeling formalism of robotics, this article proposes a unique modeling framework suited to the fast numerical integration of the dynamics of a MMS in both the FFA and the GEA. This general framework is applied on two illustrative examples drawn from bio-inspired locomotion: the passive swimming in von Karman Vortex Street, and the hovering flight with flexible flapping wings.

Keywords

Soft robotics Locomotion Newton–Euler dynamics MAVs Fish-like robots 

Mathematics Subject Classification

68T40 

Supplementary material

Supplementary material 1 (mp4 5181 KB)

References

  1. Ahlborn, B.K., Blake, R.W., Megill, W.M.: Frequency tuning in animal locomotion. Zoology 109, 43–53 (2006)CrossRefGoogle Scholar
  2. Albu-Schäffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., Wimböck, T., Wolf, S., Hirzinger, G.: Soft robotics: from torque feedback-controlled lightweight robots to intrinsically compliant systems. IEEE Robot. Autom. Mag. 15(3), 20–30 (2008)CrossRefGoogle Scholar
  3. Alexander, R.M.: Elastic Mechanisms in Animal Movement, 1st edn. Cambridge University Press, Cambridge (1988)Google Scholar
  4. Alexander, R.M.: Models and the scaling of energy costs for locomotion. J. Exp. Biol. 208, 1645–1652 (2005)CrossRefGoogle Scholar
  5. Antman, S.S.: Nonlinear Problems of Elasticity (Mathematical Sciences vol 107), 2nd edn. Springer, New York (2005)Google Scholar
  6. Beal, D.N., Hover, F.S., Triantafyllou, M.S., Liao, J.C., Lauder, G.V.: Passive propulsion in vortex wakes. J. Fluid Mech. 549, 385–402 (2006)CrossRefGoogle Scholar
  7. Bennet-Clark, H.C.: The energetics of the jump of the locust schistorcerca gregaria. J. Exp. Biol. 63, 53–83 (1975)Google Scholar
  8. Bergou, A.J., Ristroph, L., Guckenheimer, J., Cohen, I., Wang, Z.J.: Turning maneuver in free flight. Phys. Rev. Lett. 104(14), 148,101 (2010)CrossRefGoogle Scholar
  9. Boyer, F., Ali, S.: Recursive inverse dynamics of mobile multibody systems with joints and wheels. IEEE Trans. Robot. 27(2), 215–228 (2011). doi:10.1109/TRO.2010.2103450 CrossRefGoogle Scholar
  10. Boyer, F., Ali, S., Porez, M.: Macro-continuous dynamics for hyper-redundant robots: application to kinematic locomotion bio-inspired by elongated body animals. IEEE Trans. Robot. 28(2), 303–317 (2012). doi:10.1109/TRO.2011.2171616 CrossRefGoogle Scholar
  11. Boyer, F., Coiffet, P.: Generalization of Newton–Euler model for flexible manipulators. J. Robot. Syst. 13(1), 11–24 (1996)CrossRefMATHGoogle Scholar
  12. Boyer, F., Glandais, N., Khalil, W.: Flexible multibody dynamics based on a non-linear Euler–Bernoulli kinematics. Int. J. Numer. Methods Eng. 54(1), 27–59 (2002)CrossRefMATHGoogle Scholar
  13. Boyer, F., Khalil, W.: An efficient calculation of flexible manipulator inverse dynamics. Int. J. Robot. Res. 17(3), 282–293 (1998)CrossRefGoogle Scholar
  14. Boyer, F., Porez, M.: Multibody system dynamics for bio-inspired locomotion: from geometric structures to computational aspects. Bioinspir. Biomim. 10(2), 025007 (2015)CrossRefGoogle Scholar
  15. Boyer, F., Porez, M., Khalil, W.: Macro-continuous computed torque algorithm for a three-dimensional eel-like robot. IEEE Trans. Robot. 22(4), 763–775 (2006). doi:10.1109/TRO.2006.875492 CrossRefGoogle Scholar
  16. Boyer, F., Porez, M., Leroyer, A.: Poincaré–Cosserat equations for the Lighthill three-dimensional large amplitude elongated body theory: Application to robotics. J. Nonlinear Sci. 20, 47–79 (2010). doi:10.1007/s00332-009-9050-5 CrossRefMATHGoogle Scholar
  17. Boyer, F., Porez, M., Leroyer, A., Visonneau, M.: Fast dynamics of an eel-like robot—comparisons with Navier–Stokes simulations. IEEE Trans. Robot. 24(6), 1274–1288 (2008)CrossRefGoogle Scholar
  18. Boyer, F., Primault, D.: Finite element of slender beams in finite transformations: a geometrically exact approach. Int. J. Numer. Methods Eng. 59(5), 669–702 (2004)MathSciNetCrossRefMATHGoogle Scholar
  19. Canavin, J., Likins, P.: Floating reference frames for flexible spacecraft. J. Spacecr. Rockets 14(12), 724–732 (1977)CrossRefGoogle Scholar
  20. Candelier, F., Boyer, F., Leroyer, A.: Three-dimensional extension of Lighthill’s large-amplitude elongated-body theory of fish locomotion. J. Fluid Mech. 674, 196–226 (2011)MathSciNetCrossRefMATHGoogle Scholar
  21. Candelier, F., Porez, M., Boyer, F.: Note on the swimming of an elongated body in a non-uniform flow. J. Fluid Mech. 716, 616–637 (2013)MathSciNetCrossRefMATHGoogle Scholar
  22. Damaren, C., Sharf, I.: Simulation of flexible-link manipulators with inertial and geometric nonlinearities. J. Dyn. Syst. Meas. Control 117(1), 74–87 (1995)CrossRefMATHGoogle Scholar
  23. D’Eleuterio, G.M.T.: Dynamics of an elastic multibody chain: part C—recursive dynamics. Dyn. Stab. Syst. 7(2), 61–89 (1992)MATHGoogle Scholar
  24. Dhatt, G., Lefrançois, E., Touzot, G.: Finite Element Method, 1st edn. Wiley, Hoboken (2012)Google Scholar
  25. Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M.A., Kram, R., Lehman, S.: How animals move: an integrative view. Science 288(5463), 100–106 (2000)CrossRefGoogle Scholar
  26. Dickinson, M.H., Lehmann, F.O., Sane, S.P.: Wing rotation and the aerodynamic basis of insect flight. Science 284(5422), 1954–1960 (1999). http://www.sciencemag.org/content/284/5422/1954.abstract
  27. Dombre, E., Khalil, W.: Modélisation et commande des robots. Hermes, Paris (1988)MATHGoogle Scholar
  28. Featherstone, R.: The calculation of robot dynamics using articulated-body inertias. Int. J. Robot. Res. 2(1), 13–30 (1983)CrossRefGoogle Scholar
  29. Featherstone, R.: Robot Dynamics Algorithms. Springer, Boston (1987)Google Scholar
  30. Featherstone, R.: Rigid Body Dynamics Algorithms, 1st edn. Springer, New-York (2008)Google Scholar
  31. Full, R.J., Koditschek, D.E.: Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J. Exp. Biol. 202, 3325–3332 (1999)Google Scholar
  32. Hatton, R.L., Choset, H.: Geometric motion planning: the local connection, stokes’ theorem, and the importance of coordinate choice. Int. J. Robot. Res. 30(8), 988–1014 (2011). doi:10.1177/0278364910394392. http://ijr.sagepub.com/content/30/8/988.abstract
  33. Hughes, P.C., Sincarsin, G.B.: Dynamics of elastic multibody chains: part B—global dynamics. Dyn. Stab. Syst. 4(3–4), 227–243 (1989)MATHGoogle Scholar
  34. Kelly, S.D., Murray, R.M.: Geometric phases and robotic locomotion. J. Robot. Syst. 12(6), 417–431 (1995)CrossRefMATHGoogle Scholar
  35. Khalil, W., Boyer, F., Morsli, F.: General dynamic modeling of floating base tree structure robots with flexible joints and links. IEEE Transactions on Man Systems and Cybernetics (2016)Google Scholar
  36. Khalil, W., Gallot, G., Boyer, F.: Dynamic modeling and simulation of a 3-D serial eel like robot. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(6), 1259–1268 (2007)CrossRefGoogle Scholar
  37. Lighthill, M.J.: Note on the swimming of slender fish. J. Fluid Mech. 9(2), 305–317 (1960)MathSciNetCrossRefGoogle Scholar
  38. Lighthill, M.J.: Large-amplitude elongated-body theory of fish locomotion. Proc. R. Soc. Lond. Ser. B Biol. Sci. 179(1055), 125–138 (1971)CrossRefGoogle Scholar
  39. Liu, H.: Integrated modeling of insect flight: from morphology, kinematics to aerodynamics. J. Comput. Phys. 228(2), 439–459 (2009)MathSciNetCrossRefMATHGoogle Scholar
  40. Long, J.H., Nipper, K.S.: The importance of body stiffness in undulatory propulsion. Am. Zool. 36(6), 678–694 (1996)CrossRefGoogle Scholar
  41. Marsden, J.E., Ostrowski, J.: Symmetries in Motion: Geometric Foundations of Motion Control. Motion, Control, and Geometry: Proceedings of a Symposium. National Academies Press, Washington, DC (1998)Google Scholar
  42. McMichael, J.M., Francis, M.S.: Micro air vehicles\(---\)toward a new dimension in flight. Technical report DARPA (1997). http://www.fas.org/irp/program/collect/docs/mavauvsi.htm
  43. Meirovitch, L.: Methods of Analytical Dynamics. McGraw-Hill, New York (1970)MATHGoogle Scholar
  44. Murray, R.M., Sastry, S.S., Zexiang, L.: A Mathematical Introduction to Robotic Manipulation, 1st edn. CRC Press Inc., Boca Raton (1994)MATHGoogle Scholar
  45. Nakata, T., Liu, H.: A fluid-structure interaction model of insect flight with flexible wings. J. Comput. Phys. 231(4), 1822–1847 (2012)MathSciNetCrossRefMATHGoogle Scholar
  46. Ostrowski, J., Burdick, J.: Gait kinematics for a serpentine robot. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1294–1299 (1996)Google Scholar
  47. Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and biologically inspired robotics. Science 318(5853), 1088–1093 (2007)CrossRefGoogle Scholar
  48. Porez, M., Boyer, F., Belkhiri, A.: A hybrid dynamic model for bio-inspired robots with soft appendages - application to a bio-inspired flexible flapping-wing micro air vehicle. In: Proceeding of IEEE International Conference on Robotics and Automation (ICRA’2014), pp. 3556–3563 (2014)Google Scholar
  49. Porez, M., Boyer, F., Ijspeert, A.: Improved lighthill fish swimming model for bio-inspired robots: modeling, computational aspects and experimental comparisons. Int. J. Robot. Res. 33(10), 1322–1341 (2014)CrossRefGoogle Scholar
  50. Reissner, E.: On a one-dimensional large displacement finite-strain beam theory. Stud. Appl. Math. 52(2), 87–95 (1973)CrossRefMATHGoogle Scholar
  51. Roberts, T.J., Azizi, E.: Flexible mechanisms: the diverse roles of biological springs in vertebrate movement. J. Exp. Biol. 214(3), 353–361 (2011)CrossRefGoogle Scholar
  52. Shabana, A.A.: Dynamics of Multibody Systems. Wiley, New York (1989)MATHGoogle Scholar
  53. Simo, J.C., Vu-Quoc, L.: On the dynamics of flexible beams under large overall motions—the plane case: part I. J. Appl. Mech. 53(4), 849–854 (1986)CrossRefMATHGoogle Scholar
  54. Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comp. Methods Appl. Mech. Eng. 66(2), 125–161 (1988). doi:10.1016/0045-7825(88)90073-4. http://www.sciencedirect.com/science/article/pii/0045782588900734
  55. Tallapragada, P.: A swimming robot with an internal rotor as a nonholonomic system. In: Proceeding of American Control Conference (ACC’2015), pp. 657–662 (2015)Google Scholar
  56. Walker, J.A.: Rotational lift: something different or more of the same? J. Exp. Biol. 205, 3783–3792 (2002)Google Scholar
  57. Walker, M.W., Luh, J.Y.S., Paul, R.C.P.: On-line computational scheme for mechanical manipulator. Transaction ASME. J. Dyn. Syst. Meas. Control 102(2), 69–76 (1980)CrossRefGoogle Scholar
  58. Whitney, J., Wood, R.: Aeromechanics of passive rotation in flapping flight. J. Fluid Mech. 660, 197–220 (2010)MathSciNetCrossRefMATHGoogle Scholar
  59. Wood, R.J.: Design, fabrication, and analysis of a 3DOF, 3cm flapping-wing MAV. In: International conference on intelligent robots and systems, 2007. IROS 2007. IEEE/RSJ, pp. 1576–1581 (2007)Google Scholar
  60. y Alvarado, P.V., Youcef-Toumi, K.: Design of machines with compliant bodies for biomimetic locomotion in liquid environments. J. Dyn. Syst. Meas. Control 128(1), 3–13 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Frédéric Boyer
    • 1
  • Mathieu Porez
    • 1
  • Ferhat Morsli
    • 2
  • Yannick Morel
    • 3
  1. 1.Automation, Production and Computer Sciences DepartmentEcole des Mines de NantesNantes Cedex 3France
  2. 2.Laboratory of Structure MechanicsEcole Militaire Polytechnique - BEBAlgerAlgeria
  3. 3.BioRobEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations