Journal of Nonlinear Science

, Volume 27, Issue 1, pp 99–157 | Cite as

The Algebro-geometric Study of Range Maps

  • Marco Compagnoni
  • Roberto Notari
  • Andrea Alessandro Ruggiu
  • Fabio Antonacci
  • Augusto Sarti


Localizing a radiant source is a problem of great interest to many scientific and technological research areas. Localization based on range measurements is at the core of technologies such as radar, sonar and wireless sensor networks. In this manuscript, we offer an in-depth study of the model for source localization based on range measurements obtained from the source signal, from the point of view of algebraic geometry. In the case of three receivers, we find unexpected connections between this problem and the geometry of Kummer’s and Cayley’s surfaces. Our work also gives new insights into the localization based on range differences.


Source localization model Range maps Kummer’s surfaces Applied algebraic geometry 

Mathematics Subject Classification

14J99 14P10 51K99 94A12 



The authors would like to thank R. Sacco for useful discussions and suggestions during the preparation of this work and the anonymous referees for the valuable remarks on the preliminary version of the paper.


  1. Abraham, R., Marsden, J., Ratiu, T.: Manifolds, Tensor Analysis, and Applications, 2nd edn. Springer-Verlag, New York (1988)CrossRefzbMATHGoogle Scholar
  2. Alameda-Pineda, X., Horaud, R.: A geometric approach to sound source localization from time-delay estimates. IEEE Trans. Audio Speech Lang. Process. (TASLP) 22, 1082–1095 (2014)CrossRefGoogle Scholar
  3. Amari, S.: Differential geometry of curved exponential families-curvatures and information loss. Ann. Stat. 10(2), 357–385 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Amari, S., Nagaoka, H.: Methods of Information Geometry. American Mathematical Society, Providence, RI (2000)Google Scholar
  5. Aspnes, J., Eren, T., Goldenberg, D., Morse, S., Whiteley, W., Yang, R., Anderson, B., Belhumeur, P.: A theory of network localization. IEEE Trans. Mobile Comput. 5, 1663–1678 (2006)CrossRefGoogle Scholar
  6. Beck, A., Stoica, P., Li, J.: Exact and approximate solutions of source localization problems. IEEE Trans. Signal Process. (TSP) 56, 1770–1778 (2008)MathSciNetCrossRefGoogle Scholar
  7. Bellman, R., Astrom, K.: On structural identifiability. Math. Biosci. 7, 329–339 (1970)CrossRefGoogle Scholar
  8. Beltrametti, M., Carletti, E., Gallarati, D., Monti Bragadin, G.: Lectures on Curves, Surfaces and Projective Varieties. A Classical View of Algebraic Geometry. EMS Textbooks in Mathematics. European Mathematical Society, Zurich (2009)Google Scholar
  9. Benesty, J., Huang, Y. (eds.): Audio Signal Processing for Next-Generation Multimedia Communication Systems. Springer, US (2004)Google Scholar
  10. Berry, T.G.: Points at rational distance from the vertices of a triangle. Acta Arith. LXI I(4), 391–398 (1992)MathSciNetzbMATHGoogle Scholar
  11. Bestagini, P., Compagnoni, M., Antonacci, F., Sarti, A., Tubaro, S.: TDOA-based acoustic source localization in the space-range reference frame. Multidimens. Syst. Signal Process. 25, 337–359 (2014)CrossRefzbMATHGoogle Scholar
  12. Blekherman, G., Parrilo, P.A., Thomas, R.R.: Semidefinite Optimization and Convex Algebraic Geometry. Number 13 in MOS-SIAM Series on Optimization. SIAM, Philadelphia (2013)zbMATHGoogle Scholar
  13. Blumenthal, L.: Theory and Applications of Distance Geometry. Oxford University Press, Oxford (1953)zbMATHGoogle Scholar
  14. Borcea, C.: Point Configurations and Cayley–Menger Varieties. arXiv:math/0207110 (2002)
  15. Borcea, C., Streinu, I.: The number of embeddings of minimally rigid graphs. Discrete Comput. Geom. 31(2), 287–303 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Caffery, J.J.: A new approach to the geometry of toa location. Proc. IEEE Veh. Technol. Conf. (VTC) 4(52), 1943–1949 (2000)Google Scholar
  17. Cheng, Y., Wangb, X., Morelande, M., Moran, B.: Information geometry of target tracking sensor networks. Inf. Fusion 14, 311–326 (2013)CrossRefGoogle Scholar
  18. Cheung, K.W., So, H.C., Ma, W.K., Chan, Y.T.: Least squares algorithms for time-of-arrival-based mobile location. IEEE Trans. Signal Process. 52(4), 1121–1128 (2004)MathSciNetCrossRefGoogle Scholar
  19. Cheung, K.W., Ma, W.K., So, H.C.: Accurate approximation algorithm for TOA-based maximum likelihood mobile location using semidefinite programming. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 2, pp. 145–148 (2004b)Google Scholar
  20. Cheung, K.W., So, H.C.: A multidimensional scaling framework for mobile location using time-of-arrival measurements. IEEE Trans. Signal Process. 53(2), 460–470 (2005)MathSciNetCrossRefGoogle Scholar
  21. Coll, B., Ferrando, J., Morales-Lladosa, J.: Positioning systems in minkowski space-time: from emission to inertial coordinates. Class. Quantum Gravity 27, 065013 (2010)CrossRefzbMATHGoogle Scholar
  22. Coll, B., Ferrando, J., Morales-Lladosa, J.: Positioning systems in Minkowski space-time: bifurcation problem and observational data. Phys. Rev. D 86, 084036 (2012)CrossRefGoogle Scholar
  23. Compagnoni, M., Bestagini, P., Antonacci, F., Sarti, A., Tubaro, S.: Localization of acoustic sources through the fitting of propagation cones using multiple independent arrays. IEEE Trans. Audio Speech Lang. Process. (TASLP) 20, 1964–1975 (2012)CrossRefzbMATHGoogle Scholar
  24. Compagnoni, M., Canclini, A., Bestagini, P., Antonacci, F., Sarti, A.: Source localization and denoising: a perspective from the TDOA space. J. Multi-Dimens. Syst. Signal Process. doi: 10.1007/s11045-016-0400-9 (2016a)
  25. Compagnoni, M., Notari, R., Antonacci, F., Sarti, A.: On the statistical model of source localization based on range difference measurements. arXiv:1606.08303 (2016b)
  26. Compagnoni, M., Notari, R.: Tdoa-based localization in two dimension: the bifurcation curve. Fundam. Inform. 135, 199–210 (2014)MathSciNetzbMATHGoogle Scholar
  27. Compagnoni, M., Notari, R., Antonacci, F., Sarti, A.: A comprehensive analysis of the geometry of TDOA maps in localization problems. Inverse Probl. 30(3), 035004 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Costa, J.A., Patwari, N., Hero, A.O.: Distributed weighted-multidimensional scaling for node localization in sensor networks. ACM Trans. Sens. Netw. (TOSN) 2(1), 39–64 (2006)CrossRefGoogle Scholar
  29. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Inc., Englewood Cliffs, NJ (1976)zbMATHGoogle Scholar
  30. Draisma, J., Horobet, E., Ottaviani, G., Sturmfels, B., Thomas, R.R.: The euclidean distance degree. In: Proceedings of the 2014 Symposium on Symbolic-Numeric Computation, pp. 9–16 (2014)Google Scholar
  31. Drton, M., Sturmfels, B., Sullivant, S.: Lectures on Algebraic Statistics, volume 40 of Oberwolfach Seminars Series. Birkhauser, Basel (2009)CrossRefzbMATHGoogle Scholar
  32. Drton, M., Sullivant, S.: Algebraic statistical models. Stat. Sin. 17(4), 1273–1297 (2007)MathSciNetzbMATHGoogle Scholar
  33. Eren, T., Goldenberg, D., Whiteley, W., Yang, Y., Morse, A., Anderson, B., Belhumeur, P.: Rigidity, computation, and randomization in network localization. IEEE Infocom Proc. 4, 2673–2683 (2004)Google Scholar
  34. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  35. Forman, G., Zahorjan, J.: The challenges of mobile computing. IEEE Comput. 27, 38–47 (1994)CrossRefGoogle Scholar
  36. Friedland, S., Stawiska, M.: Some Approximation Problems in Semi-algebraic Geometry. arXiv:1412.3178v1 [math.AG] (2014)
  37. Hudson, R.W.H.T.: Kummer’s Quartic Surface, with a Forward by W. Cambridge University Press, Barth (1990)Google Scholar
  38. Ichiki, S., Nishimura, T.: Distance-squared mappings. Topol. Appl. 160, 1005–1016 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  39. Jian, L., Yang, Z., Liu, Y.: Beyond triangle inequality: sifting noisy and outlier distance measurements for localization. In: INFOCOM, 2010 Proceedings IEEE, pp. 1–9 (2010)Google Scholar
  40. Kobayashi, K., Wynn, H.P.: Asymptotically efficient estimators for algebraic statistical manifolds. Lect. Notes Comput. Sci. 8085, 721–728 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  41. Lasserre, J.B.: An Introduction to Polynomial and Semi-algebraic Optimization. Number 52 in Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2015)CrossRefzbMATHGoogle Scholar
  42. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  43. Menger, K.: Untersuchungen uber allgemeine metrik. Math. Ann. 100, 75–163 (1928)MathSciNetCrossRefzbMATHGoogle Scholar
  44. Menger, K.: New foundation of euclidean geometry. Am. J. Math. 53, 721–745 (1931)MathSciNetCrossRefzbMATHGoogle Scholar
  45. Moran, B., Howard, S.D., Cochran, D.: An information-geometric approach to sensor management. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5261–5264 (2012)Google Scholar
  46. Navidi, W., Murphy, W.S., Hereman, W.: Statistical methods in surveying by trilateration. Comput. Stat. Data Anal. 27(2), 209–227 (1998)CrossRefzbMATHGoogle Scholar
  47. Pistone, G., Riccomagno, E., Wynn, H.P.: Algebraic Statistics. Computational Commutative Algebra in Statistics. Volume 89 of Monographs on Statistics and Applied Probability. Chapman and Hall/CRC, Boca Raton (2001)zbMATHGoogle Scholar
  48. Quazi, A.H.: An overview on the time delay estimation in active and passive systems for target localization. IEEE Trans. Acoust. Speech Signal Process. ASSP 29, 527–533 (1981)CrossRefGoogle Scholar
  49. Savvides, A., Han, C.C., Strivastava, M.: Dynamic fine-grained localization in ad-hoc networks of sensors. In: Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, pp. 166–179 (2001)Google Scholar
  50. Schoenberg, I.: Remarks to maurice frèchet’s article ”sur la définition axiomatique d’une classe d’espaces distanciès vectoriellement applicable sur l’espace de hilbert”. Ann. Math. 36, 724–732 (1935)MathSciNetCrossRefzbMATHGoogle Scholar
  51. Shen, G., Zetik, R., Thoma, R.S.: Performance comparison of TOA and TDOA based location estimation algorithms in los environment. In: Proceedings of the 5th Workshop on Positioning, Navigation and Communication, pp. 71–78 (2008)Google Scholar
  52. Shin, D.H., Sung, T.K.: Comparisons of error characteristics between TOA and TDOA positioning. IEEE Trans. Aerosp. Electron. Syst. 38(1), 307–311 (2002)CrossRefGoogle Scholar
  53. Sippl, M., Scheraga, H.: Cayley-menger coordinates. Proc. Natl. Acad. Sci. USA 83, 2283–2287 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  54. So, H., Chan, F.: A generalized subspace approach for mobile positioning with time-of-arrival measurements. IEEE Trans. Signal Process. 55(10), 5103–5107 (2007)MathSciNetCrossRefGoogle Scholar
  55. Watanabe, S.: Algebraic Analysis for Singular Statistical Estimation. In: 10th International Conference on Algorithmic Learning Theory, ALT’99, volume 1720 of Lecture Notes in Computer Science, pp. 39–50 (1999)Google Scholar
  56. Wei, H.W., Wan, Q., Chen, Z.X., Ye, S.F.: A novel weighted multidimensional scaling analysis for time-of-arrival-based mobile location. IEEE Trans. Signal Process. 56(7), 3018–3022 (2008)MathSciNetCrossRefGoogle Scholar
  57. Weiser, M.: Some computer science issues in ubiquitous computing. Commun. ACM 36, 75–84 (1993)CrossRefGoogle Scholar
  58. Zhayida, S., Burgess, S., Kuang, Y., Åström, K.: Toa-based self-calibration of dual-microphone array. IEEE J. Sel. Top. Signal Process. 9(5), 791–801 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Marco Compagnoni
    • 1
  • Roberto Notari
    • 1
  • Andrea Alessandro Ruggiu
    • 2
  • Fabio Antonacci
    • 3
  • Augusto Sarti
    • 3
  1. 1.Dipartimento di MatematicaPolitecnico di MilanoMilanItaly
  2. 2.Department of MathematicsLinköping UniversityLinköpingSweden
  3. 3.Dipartimento di ElettronicaInformazione e Bioingegneria, Politecnico di MilanoMilanItaly

Personalised recommendations