Skip to main content
Log in

Periodic and Chaotic Orbits of Plane-Confined Micro-rotors in Creeping Flows

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We explore theoretically the complex dynamics and emergent behaviors of spinning spheres immersed in viscous fluid. The particles are coupled to each other via the fluid in which they are suspended: Each particle disturbs the surrounding fluid with a rotlet field and that fluid flow affects the motion of the other particles. We notice the emergence of intricate periodic or chaotic trajectories that depend on the rotors initial position and separation. The point-rotor motions confined to a plane bear similarities to the classic 2D point-vortex dynamics. Our analyses highlight the complexity of the interaction between just a few rotors and suggest richer behavior in denser populations. We discuss how the model gives insight into more complex systems and suggest possible extensions for future theoretical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aref, H., Pomphrey, N.: Integrable and chaotic motions of four vortices I. The case of identical vortices. Proc. R. Soc. Lond. A 380, 359–387 (1982)

  • Aref, H., Pomphrey, N.: Integrable and chaotic motions of four vortices. Phys. Rev. A 78, 297–300 (1980)

    MathSciNet  Google Scholar 

  • Aref, H.: Integrable, chaotic, and turbulent vortex motion in two-dimensional flows. Annu. Rev. Fluid Mech. 15, 345–89 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  • Aref, H., Rott, N., Thomann, H.: Gröbli’s solution of the three-vortex problem. Annu. Rev. Fluid Mech. 24, 1–20 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Aref, H., Newton, P.K., Stremler, M.A., Tokieda, T., Vainchtein, D.L.: Vortex crystals. Adv. Appl. Mech. 39, 1–79 (2003)

    Article  Google Scholar 

  • Bricard, A., Caussin, J.B., Desreumaux, N., Dauchot, O., Bartolo, D.: Emergence of macroscopic directed motion in populations of motile colloids. Nature 503, 9598 (2013)

    Article  MATH  Google Scholar 

  • Caflisch, R.E., Lim, C., Luke, J.H.C., Sangani, A.S.: Periodic solutions for three sedimenting spheres. Phys. Fluids 31, 3175 (1988)

    Article  MathSciNet  Google Scholar 

  • Climent, E., Yeo, K., Maxey, M., Karniadakis, GEm: Dynamic self-assembly of spinning particles. J. Fluids Eng. 129(4), 379–387 (2007)

    Article  Google Scholar 

  • Das, D., Saintillan, D.: Electrohydrodynamic interaction of spherical particles under Quincke rotation. Phys. Rev. E 87, 043014 (2013)

    Article  MATH  Google Scholar 

  • Fily, Y., Baskaran, A., Marchetti, M.C.: Cooperative self-propulsion of active and passive rotors. Soft Matter 8, 3002–3009 (2012)

    Article  Google Scholar 

  • Friese, M.E.J., Nieminen, T.A., Heckenberg, N.R., Rubinsztein-Dunlop, H.: Optical alignment and spinning of laser-trapped microscopic particles. Nature 394, 348–350 (1998)

    Article  Google Scholar 

  • Fürthauer, S., Strempel, M., Grill, S.W., Jülicher, F.: Active chiral processes in thin films. Phys. Rev. Lett. 110, 048103 (2013)

    Article  Google Scholar 

  • Grier, D.G.: Optical tweezers in colloid and interface science. Curr. Opin. Colloid Interface Sci. 2(3), 264–270 (1997)

    Article  Google Scholar 

  • Grzybowski, B.S., Stone, H.A., Whitesides, G.M.: Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquidair interface. Nature 405, 1033–1036 (2000)

    Article  Google Scholar 

  • Grzybowski, B.A., Jiang, X., Stone, H.A., Whitesides, G.M.: Dynamic, self-assembled aggregates of magnetized, millimeter-sized objects rotating at the liquid–air interface. Phys. Rev. E 64, 011603 (2001)

    Article  Google Scholar 

  • Grzybowski, B.A., Whitesides, G.M.: Dynamic aggregation of chiral spinners. Science 296, 718–721 (2002)

    Article  Google Scholar 

  • Jánosi, I.M., Tél, T., Wolf, D.E., Gallas, J.A.C.: Chaotic particle dynamics in viscous flows: the three-particle Stokeslet problem. Phys. Rev. E 56, 2858 (1997)

    Article  Google Scholar 

  • Jibuti, L., Rafai, S., Peyla, P.: Suspensions with a tunable effective viscosity: a numerical study. J. Fluid Mech. 693, 345–366 (2012)

    Article  Google Scholar 

  • Kim, M.J., Breuer, K.S.: Enhanced diffusion due to motile bacteria. Phys. Fluids 16(9), L78–L81 (2004)

  • Kim, S., Karrilla, S.J.: Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann, Boston (1991)

    Google Scholar 

  • Leoni, M., Liverpool, T.B.: Dynamics and interactions of active rotors. Europhys. Lett. 92, 64004 (2010)

    Article  Google Scholar 

  • Llopis, I., Pagonabarraga, I.: Hydrodynamic regimes of active rotators at fluid interfaces. Eur. Phys. J. E 26, 103–113 (2008)

    Article  Google Scholar 

  • Lushi, E., Peskin, C.S.: Modeling and simulation of active suspensions containing large numbers of interacting micro-swimmers. Comput. Struct. 122, 239–248 (2013)

    Article  Google Scholar 

  • Marchetti, M.C., Joanny, J.F., Ramaswamy, S., Liverpool, T.B., Prost, J., Rao, M., Simha, R.A.: Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143 (2013)

    Article  MATH  Google Scholar 

  • Menzel, A.M.: Tuned, driven, and active soft matter. Phys. Rep. 554, 1–45 (2015)

    Article  MathSciNet  Google Scholar 

  • Neufeld, Z., Tél, T.: The vortex dynamics analogue of the restricted three-body problem: advection in the field of three identical point vortices. J. Phys. A: Math. Gen. 30, 2263–2280 (1997)

    Article  Google Scholar 

  • Newton, P.K., Chamoun, G.: Vortex lattice theory: a particle interaction perspective. SIAM Rev. 51(3), 501–542 (2009)

    Article  MathSciNet  Google Scholar 

  • Pine, D.J., Gollub, J.P., Brady, J.F., Leshansky, A.M.: Chaos and threshold for irreversibility in sheared suspensions. Nature 438, 997–1000 (2005)

    Article  Google Scholar 

  • Saintillan, D., Shelley, M.J.: Emergence of coherent structures and large-scale flows in motile suspensions. J. R. Soc. Interface 9(68), 571–585 (2011)

    Article  Google Scholar 

  • Salipante, P.F., Vlahovska, P.M.: Electrohydrodynamic rotations of a viscous droplet. Phys. Rev. E 88, 043003 (2013)

    Article  Google Scholar 

  • Sierou, A., Brady, J.F.: Accelerated Stokesian dynamics simulations. J. Fluid Mech. 448, 115–146 (2004)

    Google Scholar 

  • Uchida, N., Golestanian, R.: Synchronization in a carpet of hydrodynamically coupled rotors with random intrinsic frequency. Europhys. Lett. 89, 50011 (2010)

    Article  Google Scholar 

  • Wang, Y., Fei, S., Byun, Y.-M., Lammert, P.E., Crespi, V.H., Sen, A., Mallouk, T.E.: Dynamic interactions between fast microscale rotors. J. Am. Chem. Soc. 131(29), 9926–9927 (2009)

    Article  Google Scholar 

  • Yeo, K., Lushi, E., Vlahovska, P.M.: Emergent collective dynamics of hydrodynamically coupled micro-rotors. arXiv preprint, arXiv:1410.2878 (2014)

  • Yeo, K., Maxey, M.R.: Rheology and ordering transitions of non-Brownian suspensions in a confined shear flow: effects of external torques. Phys. Rev. E 81, 062501 (2010)

    Article  Google Scholar 

  • Yeo, K., Maxey, M.R.: Simulation of concentrated suspensions using the force-coupling method. J. Comput. Phys. 229, 2401–2421 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the NSF through nsf-cbet 1437545.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enkeleida Lushi.

Additional information

Communicated by Paul Newton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lushi, E., Vlahovska, P.M. Periodic and Chaotic Orbits of Plane-Confined Micro-rotors in Creeping Flows. J Nonlinear Sci 25, 1111–1123 (2015). https://doi.org/10.1007/s00332-015-9254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-015-9254-9

Keywords

Mathematics Subject Classification

Navigation