Skip to main content
Log in

Homogeneous Sobolev Metric of Order One on Diffeomorphism Groups on Real Line

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this article we study Sobolev metrics of order one on diffeomorphism groups on the real line. We prove that the space \(\mathrm{Diff }_{1}(\mathbb R)\) equipped with the homogeneous Sobolev metric of order one is a flat space in the sense of Riemannian geometry, as it is isometric to an open subset of a mapping space equipped with the flat \(L^2\)-metric. Here \(\mathrm{Diff }_{1}(\mathbb R)\) denotes the extension of the group of all compactly supported, rapidly decreasing, or \(W^{\infty ,1}\)-diffeomorphisms, which allows for a shift toward infinity. Surprisingly, on the non-extended group the Levi-Civita connection does not exist. In particular, this result provides an analytic solution formula for the corresponding geodesic equation, the non-periodic Hunter–Saxton (HS) equation. In addition, we show that one can obtain a similar result for the two-component HS equation and discuss the case of the non-homogeneous Sobolev one metric, which is related to the Camassa–Holm equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnold, V.I.: Sur la géometrie différentielle des groupes de lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 319–361 (1966)

    Google Scholar 

  • Bauer M., Bruveris M., Marsland S., Michor, P.W.: Constructing reparametrization invariant metrics on spaces of plane curves. 2012. arXiv:1207.5965

  • Bauer, M., Bruveris, M., Harms, P., Michor, P.W.: Geodesic distance for right invariant sobolev metrics of fractional order on the diffeomorphism group. Ann. Global Anal. Geom. 44(1), 5–21 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Bauer, M., Bruveris, M., Harms, P., Michor, P.W.: Vanishing geodesic distance for the Riemannian metric with geodesic equation the KdV-equation. Ann. Global Anal. Geom. 41(4), 461–472 (2012)

    Google Scholar 

  • Bauer, M., Harms, P., Michor, P.W.: Sobolev metrics on shape space of surfaces. J. Geom. Mech. 3(4), 389–438 (2011)

    MathSciNet  MATH  Google Scholar 

  • Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661–1664 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A., Kappeler, T., Kolev, B., Topalov, P.: On geodesic exponential maps of the Virasoro group. Ann. Global Anal. Geom. 31(2), 155–180 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A., Kolev, B.: Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78(4), 787–804 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Darryl D. Holm and Jerrold E. Marsden. Momentum maps and measure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation. In: The breadth of symplectic and Poisson geometry, volume 232 of Progr. Math., pp 203–235. Birkhäuser Boston, Boston (2005)

  • Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 2(92), 102–163 (1970)

    Article  MathSciNet  Google Scholar 

  • Escher, J., Kolev, B., Wunsch, M.: The geometry of a vorticity model equation. Commun. Pure Appl. Anal. 11(4), 1407–1419 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Fuchs, L.: Infinite abelian groups. Vol. I. Pure and Applied Mathematics, Vol. 36. Academic Press, New York 1970)

  • Fuchs, L.: Infinite abelian groups, vol. II. Academic Press, New York (1973)

    MATH  Google Scholar 

  • Gay-Balmaz, F.: Well-posedness of higher dimensional Camassa-Holm equations. Bull. Transilv. Univ. Braşov Ser. III 2(51), 55–58 (2009)

    MathSciNet  Google Scholar 

  • Grosser, M., Kunzinger, M., Oberguggenberger, M., Steinbauer, R.: Geometric theory of generalized functions with applications to general relativity, volume 573 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht (2001)

  • Khesin, B., Michor, PW.: The flow completion of Burgers’ equation. In: Infinite dimensional groups and manifolds. In: Tilmann W. (ed) IRMA Lectures in Mathematics and Theoretical Physics 5, pp. 17–26. De Gruyter, Berlin (2004)

  • Khesin, Boris, Misiołek, Gerard: Euler equations on homogeneous spaces and Virasoro orbits. Adv. Math. 176(1), 116–144 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Kouranbaeva, S.: The Camassa–Holm equation as a geodesic flow on the diffeomorphism group. J. Math. Phys. 40(2), 857–868 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Kriegl, A., Michor, P.W.: The convenient setting for real analytic mappings. Acta Math. 165(1–2), 105–159 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Kriegl, A., Michor, P.W.: The convenient setting of global analysis, volume 53 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1997)

  • Kriegl, Andreas, Michor, Peter W.: Regular infinite-dimensional Lie groups. J. Lie Theory 7(1), 61–99 (1997)

    MathSciNet  MATH  Google Scholar 

  • Kriegl, A., Michor, P.W., Rainer, A.: The convenient setting for non-quasianalytic Denjoy–Carleman differentiable mappings. J. Funct. Anal. 256(11), 3510–3544 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Kriegl, A., Michor, P.W., Rainer, A.: The convenient setting for quasianalytic Denjoy–Carleman differentiable mappings. J. Funct. Anal. 261(7), 1799–1834 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Kriegl, A., Michor, P.W., Rainer, A.: The convenient setting for Denjoy–Carleman differentiable mappings of Beurling and Roumieu type (2012). arXiv:1111.1819

  • Kriegl, A., Michor, P.W., Rainer, A.: An exotic zoo of diffeomorphism groups on \(\mathbb{R}^n\) (2014)

  • Kurtek, S., Klassen, E., Ding, Z., Srivastava, A.: A novel Riemannian framework for shape analysis of 3d objects. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1625–1632 (2010)

  • Lenells, J.: The huntersaxton equation describes the geodesic flow on a sphere. J. Geom. Phys. 57(10), 2049–2064 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Lenells, J.: The Hunter–Saxton equation: a geometric approach. SIAM J. Math. Anal. 40(1), 266–277 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Lenells, J.: Spheres, Kähler geometry, and the two-component Hunter–Saxton equation 2011. Proc. Roy. Soc. A 68, 469 (2013)

    Google Scholar 

  • Mather, J.N.: Commutators of diffeomorphisms. Comment. Math. Helv. 49, 512–528 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Mather, J.N.: Commutators of diffeomorphisms. II. Comment. Math. Helv. 50, 33–40 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Mather, J.N.: Commutators of diffeomorphisms. III. A group which is not perfect. Comment. Math. Helv. 60(1), 122–124 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Micheli, M., Michor, P.W., Mumford, D.: Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds. SIAM J. Imaging Sci. 5(1), 394–433 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Michor, P.W.: Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach. Nonlinear Differ. Equ. Appl. 69, 133–215 (2006)

    MathSciNet  Google Scholar 

  • Michor, P.: A convenient setting for differential geometry and global analysis. Cahiers Topologie Géom. Différentielle 25(1), 63–109 (1984)

    MathSciNet  MATH  Google Scholar 

  • Michor, P.: A convenient setting for differential geometry and global analysis. II. Cahiers Topologie Géom. Différentielle 25(2), 113–178 (1984b)

    MathSciNet  MATH  Google Scholar 

  • Micheli, M., Michor, P.W., Mumford, D.: Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds. Izvestiya 77(3), 541–570 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Michor, Peter W., Mumford, David: A zoo of diffeomorphism groups on \(\mathbb{R}^n\). Ann. Glob. Anal. Geom. 44(4), 529–540 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Ovsienko, V.Y., Khesin, B.A.: Korteweg-de Vries superequations as an Euler equation. Funct. Anal. Appl. 21, 329–331 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Wunsch, M.: On the geodesic flow on the group of diffeomorphisms of the circle with a fractional Sobolev right-invariant metric. J. Nonlinear Math. Phys. 17(1), 7–11 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Wunsch, M.: The generalized Hunter–Saxton system. SIAM J. Math. Anal. 42(3), 1286–1304 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Younes, L., Michor, P.W., Shah, J., Mumford, D.: A metric on shape space with explicit geodesics. Math. Appl. 19(1), 25–57 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Yury Neretin for helpful discussions and comments regarding the space \(H^{\infty }(\mathbb R)\). MB was supported by Fonds zur Förderung der wissenschaftlichen Forschung, Projekt P 24625.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martins Bruveris.

Additional information

Communicated by Tudor Stefan Ratiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, M., Bruveris, M. & Michor, P.W. Homogeneous Sobolev Metric of Order One on Diffeomorphism Groups on Real Line. J Nonlinear Sci 24, 769–808 (2014). https://doi.org/10.1007/s00332-014-9204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-014-9204-y

Keywords

Mathematics Subject Classification

Navigation