Journal of Nonlinear Science

, Volume 24, Issue 3, pp 383–409 | Cite as

Stochastic Nonlinear Schrödinger Equations with Linear Multiplicative Noise: Rescaling Approach

  • Viorel Barbu
  • Michael Röckner
  • Deng Zhang


We prove well-posedness results for stochastic nonlinear Schrödinger equations with linear multiplicative Wiener noise, including the nonconservative case. Our approach is different from the standard literature on stochastic nonlinear Schrödinger equations. By a rescaling transformation we reduce the stochastic equation to a random nonlinear Schrödinger equation with lower-order terms and treat the resulting equation by a fixed point argument based on generalizations of Strichartz estimates proved by Marzuola et al. (J Funct Anal 255(6):1479–1553, 2008). This approach makes it possible to improve earlier well-posedness results obtained in the conservative case by a direct approach to the stochastic Schrödinger equation. In contrast to the latter, we obtain well-posedness in the full range \([1, 1 + 4/d)\) of admissible exponents in the nonlinear part (where \(d\) is the dimension of the underlying Euclidean space), i.e., in exactly the same range as in the deterministic case.


Stochastic Wiener noise Strichartz estimate 

Mathematics Subject Classification

35Q41 60H15 35R60 



The authors are indebted to Daniel Tataru for fruitful discussions and suggestions regarding the proof of Lemma 4.1 Tataru.


  1. Barbu, V., Röckner, M.: On a random scaled porous media equation. J. Differ. Equ. 251, 2494–2514 (2011)CrossRefzbMATHGoogle Scholar
  2. Barbu, V., Röckner, M.: Stochastic variational inequalities and applications to the total variations flow perturbed by linear multiplicative noise. Arch. Ration. Mech. Anal. 209, 797–834 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  3. Barchielli, A., Gregoratti, M.: Quantum Trajectories and Measurements in Continuous Case. The Diffusive Case, Lecture Notes Physics, vol. 782, Springer, Berlin (2009)Google Scholar
  4. Barchielli, A., Pelegrini, C., Petruccio, F.: Stochastic Schrödinger equations with coloured noise. Lett. J. Explor. Front. Phys. EPL 91 (2010)Google Scholar
  5. Cebotarev, A.M., Fagnola, F.: Sufficient conditions for conservativity of minimal quantum semigroups. J. Funct. Anal. 153(2), 382–401 (1998)CrossRefMathSciNetGoogle Scholar
  6. de Bouard, A., Debussche, A.: A stochastic nonlinear Schrödinger equation via multiplicative noise. Commun. Math. Phys. 205, 161–181 (1999)CrossRefzbMATHGoogle Scholar
  7. de Bouard, A., Debussche, A.: The stochastic nonlinear Schrödinger equation in \(H^1\). Stoch. Anal. Appl. 21, 97–126 (2003)CrossRefzbMATHGoogle Scholar
  8. de Bouard, A., Debussche, A.: Blow up for the stochastic nonlinear Schrödinger equation with multiplicative noise. Ann. Probab. 33, 1078–1110 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  9. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge, MA (2008)zbMATHGoogle Scholar
  10. Doi, S.: On the Cauchy problem for Schrödinger type equation and the regularity of solutions. J. Math. Kyoto Univ. 34(2), 319–328 (1994)zbMATHMathSciNetGoogle Scholar
  11. Doi, S.: Remarks on the Cauchy problem for Schrödinger-type equations. Commun. PDE 21, 163–178 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  12. Fagnola, F., Mora, C.M.: Stochastic Schrödinger equations and applications to Ehrenfast-type theorems. ALEA. Lat. J. Probab. Math. Stat. 10(1), 191–223 (2013)zbMATHMathSciNetGoogle Scholar
  13. Grecksch, W., Lisei, H.: Stochastic nonlinear equations of Schrödinger type. Stoch. Anal. Appl. 29(4), 631–653 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  14. Kato, T.: Nonliner Schrödinger equations, Schrödinger operators (Sønderberg 1988), 218–263. Lecture Notes in Physics, 345, Springer, Berlin (1989)Google Scholar
  15. Kendal, M., Price, C.J.: Zeros of Brownian polynomials. Stoch. Rep. 70, 3–4, 217–308Google Scholar
  16. Krein, S.G.: Linear Differential Equations in Banach Spaces. Translations of Mathematical Monographs, vol. 29. American Mathematical Society (1972)Google Scholar
  17. Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations. Springer, Berlin (2009)zbMATHGoogle Scholar
  18. Marzuola, J., Metcalfe, J., Tataru, D.: Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations. J. Funct. Anal. 255(6), 1479–1553 (2008)CrossRefMathSciNetGoogle Scholar
  19. Mora, C.M., Robolledo, R.: Basic properties of nonlinear stochastic Schrödinger equation deriven by Brownian motions. Ann. Appl. Probab. 18(2), 59–619 (2008)CrossRefMathSciNetGoogle Scholar
  20. Tataru, D.: Personal CommunicationGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Octav Mayer Institute of MathematicsRomanian AcademyIasiRomania
  2. 2.Al.I. Cuza UniversityIasiRomania
  3. 3.Fakultät für MathematikUniversität BielefeldBielefeldGermany
  4. 4.Institute of Applied Mathematics, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina

Personalised recommendations