Journal of Nonlinear Science

, Volume 24, Issue 2, pp 201–242 | Cite as

Some Joys and Trials of Mathematical Neuroscience



I describe the basic components of the nervous system—neurons and their connections via chemical synapses and electrical gap junctions—and review the model for the action potential produced by a single neuron, proposed by Hodgkin and Huxley (HH) over 60 years ago. I then review simplifications of the HH model and extensions that address bursting behavior typical of motoneurons, and describe some models of neural circuits found in pattern generators for locomotion. Such circuits can be studied and modeled in relative isolation from the central nervous system and brain, but the brain itself (and especially the human cortex) presents a much greater challenge due to the huge numbers of neurons and synapses involved. Nonetheless, simple stochastic accumulator models can reproduce both behavioral and electrophysiological data and offer explanations for human behavior in perceptual decisions. In the second part of the paper I introduce these models and describe their relation to an optimal strategy for identifying a signal obscured by noise, thus providing a norm against which behavior can be assessed and suggesting reasons for suboptimal performance. Accumulators describe average activities in brain areas associated with the stimuli and response modes used in the experiments, and they can be derived, albeit non-rigorously, from simplified HH models of excitatory and inhibitory neural populations. Finally, I note topics excluded due to space constraints and identify some open problems.


Accumulator Averaging Central pattern generator Decision making Bifurcation Drift-diffusion process Mean field reduction Optimality Phase reduction Speed-accuracy tradeoff 

Mathematics Subject Classification

34Cxx 34Dxx 37Cxx 37N25 60H10 91E10 92C20 


  1. Abbott, L.F.: Theoretical neuroscience rising. Neuron 60, 489–495 (2008) Google Scholar
  2. Arnold, L.: Stochastic Differential Equations. Wiley, New York (1974) MATHGoogle Scholar
  3. Aston-Jones, G., Cohen, J.D.: An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005) Google Scholar
  4. Ayali, A., Fuchs, E., Hulata, E., Jacob, E.B.: The function of inter segmental connections in determining temporal characteristics of the spinal cord rhythmic output. Neuroscience 147, 236–246 (2007) Google Scholar
  5. Back, A., Guckenheimer, J., Myers, M.: A dynamical simulation facility for hybrid systems. In: Lecture Notes in Computer Science, vol. 736, pp. 255–267. Springer, Berlin (1993) Google Scholar
  6. Baker, S.N.: Oscillatory interactions between sensorimotor cortex and periphery. Curr. Opin. Neurobiol. 17, 649–655 (2007) Google Scholar
  7. Balan, P.F., Gottlieb, J.: Functional significance of nonspatial information in monkey lateral intraparietal area. J. Neurosci. 29(25), 8166–8176 (2009) Google Scholar
  8. Balci, F., Simen, P., Niyogi, R., Saxe, A., Holmes, P., Cohen, J.D.: Acquisition of decision making criteria: reward rate ultimately beats accuracy. Atten. Percept. Psychophys. 73(2), 640–657 (2011) Google Scholar
  9. Bayes, T.: An essay toward solving a problem in the doctrine of chances. Philos. Trans. R. Soc. Lond. 53, 370–418 (1763) Google Scholar
  10. Bejjanki, V.R., Lu, Z.L., Beck, J.M., Pouget, A.: Perceptual learning as improved probabilistic inference in early sensory areas. Nat. Neurosci. 14(6), 783–790 (2011) Google Scholar
  11. Ben-Haim, Y.: Information Gap Decision Theory: Decisions Under Severe Uncertainty, 2nd edn. Academic Press, New York (2006) Google Scholar
  12. Berridge, C.W., Waterhouse, B.D.: The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brains Res. Rev. 42, 33–84 (2003) Google Scholar
  13. Bogacz, R., Gurney, K.: The basal ganglia and cortex implement optimal decision making between alternative actions. Neural Comput. 19, 442–477 (2007) MATHMathSciNetGoogle Scholar
  14. Bogacz, R., Larsen, T.: Integration of reinforcement learning and optimal decision-making theories of the basal ganglia. Neural Comput. 23, 817–851 (2011) MATHMathSciNetGoogle Scholar
  15. Bogacz, R., Brown, E., Moehlis, J., Holmes, P., Cohen, J.D.: The physics of optimal decision making: a formal analysis of models of performance in two alternative forced choice tasks. Psychol. Rev. 113(4), 700–765 (2006) Google Scholar
  16. Bogacz, R., Hu, P., Holmes, P., Cohen, J.D.: Do humans produce the speed-accuracy tradeoff that maximizes reward rate? Q. J. Exp. Psychol. 63(5), 863–891 (2010) Google Scholar
  17. Bohil, C.J., Maddox, W.T.: On the generality of optimal versus objective classifier feedback effects on decision criterion learning in perceptual categorization. Mem. Cogn. 31(2), 181–198 (2003) Google Scholar
  18. Botvinick, M.M.: Hierarchical reinforcement learning and decision making. Curr. Opin. Neurobiol. 22, 956–962 (2012) Google Scholar
  19. Botvinick, M.M., Niv, Y., Barto, A.C.: Hierarchically organized behavior and its neural foundations: a reinforcement-learning perspective. Cognition 113, 262–280 (2009) Google Scholar
  20. Britten, K.H., Shadlen, M.N., Newsome, W.T., Movshon, J.A.: Responses of neurons in macaque MT to stochastic motion signals. Vis. Neurosci. 10, 1157–1169 (1993) Google Scholar
  21. Brown, E., Moehlis, J., Holmes, P.: On the phase reduction and response dynamics of neural oscillator populations. Neural Comput. 16(4), 673–715 (2004) MATHGoogle Scholar
  22. Brown, E., Gao, J., Holmes, P., Bogacz, R., Gilzenrat, M., Cohen, J.: Simple networks that optimize decisions. Int. J. Bifurc. Chaos 15(3), 803–826 (2005) MATHMathSciNetGoogle Scholar
  23. Brunel, N., van Rossum, M.C.W.: Lapicque’s 1907 paper: from frongs to integrate-and-fire. Biol. Cybern. 97, 337–339 (2007) MATHGoogle Scholar
  24. Brunel, N., Wang, X.-J.: Effects of neuromodulation in a cortical network model. J. Comput. Neurosci. 11, 63–85 (2001) Google Scholar
  25. Buchanan, J.T., Grillner, S.: Newly identified glutamate interneurons and their role in locomotion in the lamprey spinal cord. Science 236, 312–314 (1987) Google Scholar
  26. Buhusi, C.V., Meck, W.H.: What makes us tick? Functional and neural mechanisms of interval timing. Nature 6, 755–765 (2005) Google Scholar
  27. Burkitt, A.N.: A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol. Cybern. 95, 1–19 (2006a) MATHMathSciNetGoogle Scholar
  28. Burkitt, A.N.: A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. Biol. Cybern. 95, 97–112 (2006b) MATHMathSciNetGoogle Scholar
  29. Busemeyer, J.R., Townsend, J.T.: Decision field theory: a dynamic-cognitive approach to decision making in an uncertain environment. Psychol. Rev. 100, 432–459 (1993) Google Scholar
  30. Buzsaki, G.: Rhythms of the Brain. Oxford University Press, New York (2006) MATHGoogle Scholar
  31. Chay, T.R., Keizer, J.: Minimal model for membrane oscillations in the pancreatic β-cell. Biophys. J. 42, 181–190 (1983) Google Scholar
  32. Chiel, H.J., Beer, R.D.: The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends Neurosci. 20(12), 553–557 (1997) Google Scholar
  33. Cho, R.Y., Nystrom, L.E., Brown, E., Jones, A.D., Braver, T.S., Holmes, P., Cohen, J.D.: Mechanisms underlying dependencies of performance on stimulus history in a two-alternative forced-choice task. Cogn. Affect. Behav. Neurosci. 2(4), 283–299 (2002) Google Scholar
  34. Chung, K., Wallace, J., Kim, S.-Y., Kalyanasundaram, S., Andalman, A.S., Davidson, T.J., Mirzabekov, J.J., Zalocusky, K.A., Mattis, J., Denisin, A.K., Pak, S., Bernstein, H., Ramakrishnan, C., Grosenick, L., Gradinaru, V., Deisseroth, K.: Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013) Google Scholar
  35. Cohen, A.H., Holmes, P., Rand, R.H.: The nature of coupling between segmental oscillators of the lamprey spinal generator for locomotion: a model. J. Math. Biol. 13, 345–369 (1982) MATHMathSciNetGoogle Scholar
  36. Cohen, A.H., Rossignol, S., Grillner, S. (eds.): Neural Control of Rhythmic Movements in Vertebrates. Wiley, New York (1988) Google Scholar
  37. Cohen, J.D., Dunbar, K., McClelland, J.L.: On the control of automatic processes: a parallel distributed processing model of the Stroop effect. Psychol. Rev. 97(3), 332–361 (1990) Google Scholar
  38. Cohen, J.D., Servan-Schreiber, D., McClelland, J.L.: A parallel distributed processing approach to automaticity. Am. J. Psychol. 105, 239–269 (1992) Google Scholar
  39. Coulthard, E.J., Bogacz, R., Javed, S., Mooney, L.K., Murphy, G., Keeley, S., Whone, A.L.: Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making. Brain 135, 3721–3734 (2012) Google Scholar
  40. Daun-Gruhn, S.: A mathematical modeling study of inter-segmental coordination during stick insect walking. J. Comput. Neurosci. 30(2), 255–278 (2011) MathSciNetGoogle Scholar
  41. Daun-Gruhn, S., Toth, T.I.: An inter-segmental network model and its use in elucidating gait-switches in the stick insect. J. Comput. Neurosci. 31(1), 43–60 (2011) Google Scholar
  42. Daun-Gruhn, S., Rubin, J.E., Rybak, I.A.: Control of oscillation periods and phase durations in half-center central pattern generators: a comparative mechanistic analysis. J. Comput. Neurosci. 27(1), 3–36 (2009) MathSciNetGoogle Scholar
  43. Dayan, P.: How to set the switches on this thing. Curr. Opin. Neurobiol. 22, 1068–1074 (2012) Google Scholar
  44. Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge (2001) Google Scholar
  45. De Schutter, E.: Why are computational neuroscience and systems biology so separate? PLoS Comput. Biol. 4(5), e1000078 (2008) Google Scholar
  46. De Schutter, E. (ed.): Computational Modeling Methods for Neuroscientists. MIT Press, Cambridge (2009) Google Scholar
  47. Deco, G., Rolls, E.T., Albantakis, L., Romo, R.: Brain mechanisms for perceptual and reward-related decision-making. Prog. Neurobiol. 103, 194–213 (2013) Google Scholar
  48. Destexhe, A., Mainen, Z.F., Sejnowski, T.J.: Kinetic models of synaptic transmission. In: Koch, C., Segev, I. (eds.) Methods in Neuronal Modeling: From Ions to Networks, 2nd edn., pp. 1–25. MIT Press, Cambridge (1999) Google Scholar
  49. Doloc-Mihu, A., Calabrese, R.L.: A database of computational models of a half-center oscillator for analyzing how neuronal parameters influence network activity. J. Biol. Phys. 37(3), 263–283 (2011) Google Scholar
  50. Doya, K., Shadlen, M.N. (eds.): Decision making. Curr. Opin. Neurobiol. 22(6) (2012). Special issue Google Scholar
  51. Dutilh, G., Vandekerckhove, J., Tuerlinckx, F., Wagenmakers, E.J.: A diffusion model decomposition of the practice effect. Psychon. Bull. Rev. 16(6), 1026–1036 (2009) Google Scholar
  52. Eckhoff, P., Wong-Lin, K.F., Holmes, P.: Optimality and robustness of a biophysical decision-making model under nonepinephrine modulation. J. Neurosci. 29(13), 4301–4311 (2009) Google Scholar
  53. Eckhoff, P., Wong-Lin, K.F., Holmes, P.: Dimension reduction and dynamics of a spiking neuron model for decision making under neuromodulation. SIAM J. Appl. Dyn. Syst. 10(1), 148–188 (2011) MATHMathSciNetGoogle Scholar
  54. Ermentrout, G.B., Kopell, N.: Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math. 46, 233–253 (1986) MATHMathSciNetGoogle Scholar
  55. Ermentrout, G.B., Terman, D.: Mathematical Foundations of Neuroscience. Springer, New York (2010) MATHGoogle Scholar
  56. Feng, S., Holmes, P., Rorie, A., Newsome, W.T.: Can monkeys choose optimally when faced with noisy stimuli and unequal rewards? PLoS Comput. Biol. 5(2), e1000284 (2009) MathSciNetGoogle Scholar
  57. FitzHugh, R.: Impulses and physiological states in models of nerve membrane. Biophys. J. 1, 445–466 (1961) Google Scholar
  58. Foucaud-Trocme, N., Brunel, N.: Dynamics of the instantaneous firing rate in response to changes in input statistics. J. Comput. Neurosci. 18, 311–321 (2005) MathSciNetGoogle Scholar
  59. Foucaud-Trocme, N., Hansel, D., van Vreeswijk, C., Brunel, N.: How spike generation mechanisms determine the neuronal response to fluctuating inputs. J. Neurosci. 23, 11628–11640 (2003) Google Scholar
  60. Fries, P.: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005) Google Scholar
  61. Fries, P., Nikolic, D., Singer, W.: The gamma cycle. Trends Neurosci. 30, 309–316 (2007) Google Scholar
  62. Fuchs, E., Holmes, P., Kiemel, T., Ayali, A.: Intersegmental coordination of cockroach locomotion: adaptive control of centrally coupled pattern generator circuits. Frontiers Neural Circuits 4, 125 (2011) Google Scholar
  63. Gabbiani, F., Cox, S.: Mathematics for Neuroscientists. Academic Press, San Diego (2010) Google Scholar
  64. Gao, J., Wong-Lin, K.F., Holmes, P., Simen, P., Cohen, J.D.: Sequential effects in two-choice reaction time tasks: decomposition and synthesis of mechanisms. Neural Comput. 21(9), 2407–2436 (2009) MATHMathSciNetGoogle Scholar
  65. Gao, J., Tortell, R., McClelland, J.L.: Dynamic integration of reward and stimulus information in perceptual decision-making. PLoS ONE 6(3), e16749 (2011) Google Scholar
  66. Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer, New York (1985), 3rd edn. (2004) Google Scholar
  67. Gervasoni, D., Lin, S.-C., Ribeiro, S., Soares, E.S., Pantoja, J., Nicolelis, M.A.L.: Global forebrain dynamics predict rat behavioral states and their transitions. J. Neurosci. 24(49), 11137–11147 (2004) Google Scholar
  68. Getting, P.A.: Comparative analysis of invertebrate central pattern generators. In: Cohen, A.H., Rossignol, S., Grillner, S. (eds.) Neural Control of Rhythmic Movements in Vertebrates, pp. 101–128. Wiley, New York (1988), Chap. 4 Google Scholar
  69. Ghigliazza, R.M., Holmes, P.: A minimal model of a central pattern generator and motoneurons for insect locomotion. SIAM J. Appl. Dyn. Syst. 3(4), 671–700 (2004a) MATHMathSciNetGoogle Scholar
  70. Ghigliazza, R.M., Holmes, P.: Minimal models of bursting neurons: how multiple currents, conductances and timescales affect bifurcation diagrams. SIAM J. Appl. Dyn. Syst. 3(4), 636–670 (2004b) MATHMathSciNetGoogle Scholar
  71. Gibbon, J.: Scalar expectancy theory and Weber’s law in animal timing. Psychol. Rev. 84(3), 279–325 (1977) Google Scholar
  72. Gold, J.I., Shadlen, M.N.: Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci. 5(1), 10–16 (2001) Google Scholar
  73. Gold, J., Shadlen, M.: Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron 36, 299–308 (2002) Google Scholar
  74. Gold, J.I., Shadlen, M.N.: Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron 36, 299–308 (2002) Google Scholar
  75. Goldfarb, S., Wong-Lin, K.F., Schwemmer, M., Leonard, N.E., Holmes, P.: Can post-error dynamics explain sequential reaction time patterns? Frontiers Psychol. 3, 213 (2012) Google Scholar
  76. Gray, C.M., Singer, W.: Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995) Google Scholar
  77. Gray, C.M., König, P., Engel, A.K., Singer, W.: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337 (1989) Google Scholar
  78. Grillner, S.: Bridging the gap—from ion channels to networks and behaviour. Curr. Opin. Neurobiol. 9, 663–669 (1999) Google Scholar
  79. Grossberg, S.: Nonlinear neural networks: principles, mechanisms, and architectures. Neural Netw. 1, 17–61 (1988) Google Scholar
  80. Guckenheimer, J.: Isochrons and phaseless sets. J. Math. Biol. 1, 259–273 (1975) MATHMathSciNetGoogle Scholar
  81. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983), 6th edn. (2002) MATHGoogle Scholar
  82. Guckenheimer, J., Johnson, S.: Planar hybrid systems. In: Lecture Notes in Computer Science, vol. 999, pp. 202–225. Springer, Berlin (1995) Google Scholar
  83. Hagevik, A., McClellan, A.D.: Coupling of spinal locomotor networks in larval lamprey revealed by receptor blockers for inhibitory amino acids: neurophysiology and computer modeling. J. Neurophysiol. 72, 1810–1829 (1994) Google Scholar
  84. Hellgren, J., Grillner, S., Lansner, A.: Computer simulation of the segmental neural network generating locomotion in lamprey by using populations of network interneurons. Biol. Cybern. 68, 1–13 (1992) Google Scholar
  85. Hill, A.A., Lu, J., Masino, M.A., Olsen, O.H., Calabrese, R.L.: A model of a segmental oscillator in the leech heartbeat neuronal network. J. Comput. Neurosci. 10, 281–302 (2001) Google Scholar
  86. Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant Manifolds. Springer Lecture Notes in Mathematics, vol. 583. Springer, Berlin (1977) MATHGoogle Scholar
  87. Hirsch, M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems and an Introduction to Chaos. Academic Press/Elsevier, San Diego (2004) MATHGoogle Scholar
  88. Hodgkin, A.L., Huxley, A.F.: The components of membrane conductance in the giant axon of Loligo. J. Physiol. 116, 473–496 (1952a) Google Scholar
  89. Hodgkin, A.L., Huxley, A.F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116, 449–472 (1952b) Google Scholar
  90. Hodgkin, A.L., Huxley, A.F.: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. 116, 497–506 (1952c) Google Scholar
  91. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952d) Google Scholar
  92. Hodgkin, A.L., Huxley, A.F., Katz, B.: Ionic currents underlying activity in the giant axon of the squid. Arch. Sci. Physiol. 3, 129–150 (1949) Google Scholar
  93. Hodgkin, A.L., Huxley, A.F., Katz, B.: Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116, 424–448 (1952) Google Scholar
  94. Holmes, M.H.: Introduction to Perturbation Methods, 2nd edn. Springer, New York (2013) MATHGoogle Scholar
  95. Holmes, P., Cohen, J.D.: Optimality and some of its discontents: successes and shortcomings of existing models for binary decisions. Top. Cog. Sci. 6 (2014). To appear Google Scholar
  96. Holmes, P., Full, R.J., Koditschek, D., Guckenheimer, J.: The dynamics of legged locomotion: models, analyses and challenges. SIAM Rev. 48(2), 207–304 (2006) MATHMathSciNetGoogle Scholar
  97. Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks. Springer, New York (1997) Google Scholar
  98. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642–653 (2008) Google Scholar
  99. Insel, T.R., Landis, S.C., Collins, F.S.: The NIH BRAIN initiative. Science 340(6133), 687–688 (2013) Google Scholar
  100. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15, 1063–1070 (2004) Google Scholar
  101. Johnston, D., Wu, S.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge (1997) Google Scholar
  102. Jones, C.K.R.T.: Geometric Singular Perturbation Theory. Lecture Notes in Mathematics, vol. 1609. Springer, Heidelberg (1994). C.I.M.E. Lectures Google Scholar
  103. Jones, A.D., Cho, R.Y., Nystrom, L.E., Cohen, J.D., Brown, E.T., Braver, T.S.: A computational model of anterior cingulate function in speeded response tasks: effects of frequency, sequence, and conflict. Cog. Affect. Behav. Neurosci. 2(4), 300–317 (2002) Google Scholar
  104. Jones, L.M., Fontanini, A., Sadacca, B.F., Miller, P., Katz, D.B.: Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles. Proc. Natl. Acad. Sci. USA 104(47), 18772–18777 (2007) Google Scholar
  105. Keener, J., Sneyd, J.: Mathematical Physiology, 2nd edn. Springer, New York (2009), 2 vols Google Scholar
  106. Knight, B.W.: Dynamics of encoding in a population of neurons. J. Gen. Physiol. 59, 734–766 (1972a) Google Scholar
  107. Knight, B.W.: The relationship between the firing rate of a single neuron and the level of activity in a population of neurons. Experimental evidence for resonant enhancement in the population response. J. Gen. Physiol. 59, 767–778 (1972b) Google Scholar
  108. Knill, D.C., Pouget, A.: The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27(12) (2004) Google Scholar
  109. Kopell, N.: Toward a theory of modelling central pattern generators. In: Cohen, A.H., Rossignol, S., Grillner, S. (eds.) Neural Control of Rhythmic Movements in Vertebrates, pp. 3369–3413. Wiley, New York (1988) Google Scholar
  110. Kopell, N., Traub, R.D., Whittington, M.A.: Modeling rhythms: from physiology to function. In: Short Course 2, Rhythms of the Neocortex: Where Do They Come From and What Are They Good For? Society for Neuroscience (2009).
  111. Kopell, N., Börgers, C., Pervouchine, D., Malerba, P., Tort, A.B.L.: Gamma and theta rhythms in biophysical models of hippocampal circuits. In: Cutsuridis, V., Graham, B.F., Cobb, S., Vida, I. (eds.) Hippocampal Microcircuits: A Computational Modeller’s Resource Book, pp. 423–457. Springer, New York (2010) Google Scholar
  112. Kording, K.P., Wolpert, D.M.: Bayesian decision theory in sensorimotor control. Trends Cogn. Sci. 10, 319–326 (2006) Google Scholar
  113. Kording, K.P., Ku, S., Wolpert, D.: Bayesian integration in force estimation. J. Neurophysiol. 92, 3161–3165 (2004) Google Scholar
  114. Krinsky, V.I., Kokoz, Yu.M.: Reduction of the Hodgkin-Huxley system to a second order system. Biofizika 18(3), 506–511 (1973) Google Scholar
  115. Kukillaya, R.P., Holmes, P.: A hexapedal jointed-leg model for insect locomotion in the horizontal plane. Biol. Cybern. 97, 379–395 (2007) MATHMathSciNetGoogle Scholar
  116. Kukillaya, R.P., Holmes, P.: A model for insect locomotion in the horizontal plane: feedforward activation of fast muscles, stability, and robustness. J. Theor. Biol. 261(2), 210–226 (2009) MathSciNetGoogle Scholar
  117. Kukillaya, R.P., Proctor, J., Holmes, P.: Neuro-mechanical models for insect locomotion: Stability, maneuverability, and proprioceptive feedback. CHAOS: Interdiscip. J. Nonlinear Sci. 19(2), 026107 (2009) MathSciNetGoogle Scholar
  118. Laming, D.R.J.: Information Theory of Choice-Reaction Times. Academic Press, New York (1968) Google Scholar
  119. Lapicque, L.: Recherches quantitatives sur l’excitatabilité électrique des nerfs traitée comme une polarisation. J. Physiol. Pathol. Gen. 9, 620–635 (1907) Google Scholar
  120. Latham, P., Brunel, N.: Firing rate of the noisy quadratic integrate-and-fire neuron. Neural Comput. 15, 2281–2306 (2003) MATHGoogle Scholar
  121. Latham, P.E., Richmond, B.J., Nelson, P.G., Nirenberg, S.: Intrinsic dynamics in neuronal networks. I. Theory. J. Neurophysiol. 83, 808–827 (2000) Google Scholar
  122. Liu, Y.S., Holmes, P., Cohen, J.D.: A neural network model of the Eriksen task: reduction, analysis, and data fitting. Neural Comput. 20(2), 345–373 (2008) MATHMathSciNetGoogle Scholar
  123. Liu, Y.S., Yu, A.J., Holmes, P.: Dynamical analysis of Bayesian inference models for the Eriksen task. Neural Comput. 21(6), 1520–1553 (2009) MATHMathSciNetGoogle Scholar
  124. London, M., Häusser, M.: Dendritic computation. Annu. Rev. Neurosci. 28, 503–532 (2005) Google Scholar
  125. Ma, W.J., Beck, J.M., Latham, P.E., Pouget, A.: Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432–1438 (2006) Google Scholar
  126. Ma, W.J., Beck, J.M., Pouget, A.: Spiking networks for Bayesian inference and choice. Curr. Opin. Neurobiol. 18, 217–222 (2008) Google Scholar
  127. MacKay, D.J.C.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003) MATHGoogle Scholar
  128. Mackey, M.C., Santillán, M.: Andrew Fielding Huxley (1917–1952). AMS Not. 60(5), 576–584 (2013) Google Scholar
  129. Maddox, W.T., Bohil, C.J.: Base-rate and payoff effects in multidimensional perceptual categorization. J. Exp. Psychol. 24(6), 1459–1482 (1998) Google Scholar
  130. Malkin, I.G.: Methods of Poincaré and Linstedt in the Theory of Nonlinear Oscillations. Gostexisdat, Moscow (1949). In Russian Google Scholar
  131. Malkin, I.G.: Some Problems in Nonlinear Oscillation Theory. Gostexisdat, Moscow (1956). In Russian Google Scholar
  132. Marder, E.: Motor pattern generation. Curr. Opin. Neurobiol. 10(6), 691–698 (2000) Google Scholar
  133. Marder, E., Bucher, D.: Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu. Rev. Physiol. 69, 291–316 (2007) Google Scholar
  134. Markram, H.: The blue brain project. Nat. Rev. Neurosci. 7, 153–160 (2006) Google Scholar
  135. Mazurek, M.E., Roitman, J.D., Ditterich, J., Shadlen, M.N.: A role for neural integrators in perceptual decision making. Cereb. Cortex 13(11), 891–898 (2003) Google Scholar
  136. McCarthy, M.M., Moore-Kochlacs, C., Gu, X., Boyden, E.S., Han, X., Kopell, N.: Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proc. Nat. Acad. Sci. 108(28), 11620–11625 (2011) Google Scholar
  137. McCarthy, M.M., Ching, S., Whittington, M.A., Kopell, N.: Dynamical changes in neurological disease and anesthesia. Curr. Opin. Neurobiol. 22(4), 693–703 (2012) Google Scholar
  138. McGinn, C.: What can your neurons tell you? New York Review of Books. LX 12:49–50 (2013), by J.-P. Changeux Google Scholar
  139. McMillen, T., Holmes, P.: An elastic rod model for anguilliform swimming. J. Math. Biol. 53, 843–866 (2006) MathSciNetGoogle Scholar
  140. McMillen, T., Williams, T.L., Holmes, P.: Nonlinear muscles, passive viscoelasticity and body taper conspire to create neuro-mechanical phase lags in anguilliform swimmers. PLoS Comput. Biol. 4(8), e1000157 (2008) MathSciNetGoogle Scholar
  141. Miller, K.D., Fumarola, F.: Mathematical equivalence of two common forms of firing rate models of neural networks. Neural Comput. 24, 25–31 (2012) MATHMathSciNetGoogle Scholar
  142. Myung, J., Busemeyer, J.R.: Criterion learning in a deferred decision-making task. Am. J. Psychol. 102(1), 1–16 (1989) Google Scholar
  143. Nagumo, J.S., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating a nerve axon. Proc. IRE 50, 2061–2070 (1962) Google Scholar
  144. Pearson, K.G.: Central programming and reflex control of walking in the cockroach. J. Exp. Biol. 56, 173–193 (1972) Google Scholar
  145. Pearson, K.G.: Motor systems. Curr. Opin. Neurobiol. 10, 649–654 (2000) Google Scholar
  146. Pearson, K.G., Fourtner, C.R.: Non-spiking interneurons in walking system of the cockroach. J. Neurophysiol. 38, 33–51 (1975) Google Scholar
  147. Pearson, K.G., Iles, J.F.: Discharge patterns of coxal levator and depressor motoneurones of the cockroach, Periplaneta americana. J. Exp. Biol. 52, 139–165 (1970) Google Scholar
  148. Pearson, K.G., Iles, J.F.: Nervous mechanisms underlying intersegmental co-ordination of leg movements during walking in the cockroach. J. Exp. Biol. 58, 725–744 (1973) Google Scholar
  149. Petrov, A.A., Van Horn, N.M., Ratcliff, R.: Dissociable perceptual-learning mechanisms revealed by diffusion-model analysis. Psychon. Bull. Rev. 18(3), 490–497 (2011) Google Scholar
  150. Posner, M.I., Snyder, C.R.R.: Attention and cognitive control. In: Solso, R. (ed.) Information Processing and Cognition: The Loyola Symposium. Lawrence Erlbaum, Hillsdale (1975) Google Scholar
  151. Pouget, A., Dayan, P., Zemel, R.S.: Inference and computation with population codes. Annu. Rev. Neurosci. 26, 381–410 (2003) Google Scholar
  152. Proctor, J., Holmes, P.: Reflexes and preflexes: on the role of sensory feedback on rhythmic patterns in legged locomotion. Biol. Cybern. 2, 513–531 (2010) MathSciNetGoogle Scholar
  153. Rall, W.: Branching dendritic trees and motoneuron membrane resistivity. Exp. Neurol. 1(5), 491–517 (1959) Google Scholar
  154. Rall, W.: Theoretical significance of dendritic trees for neuronal input-output relations. In: Reiss, R. (ed.) Neural Theory and Modeling, pp. 93–97. Stanford Univ. Press, Stanford (1964) Google Scholar
  155. Rall, W., Burke, R.E., Smith, T.G., Nelson, P.G., Frank, K.: Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. J. Neurophysiol. 30, 1169–1193 (1967) Google Scholar
  156. Ratcliff, R.: A theory of memory retrieval. Psychol. Rev. 85, 59–108 (1978) Google Scholar
  157. Ratcliff, R., Van Zandt, T., McKoon, G.: Connectionist and diffusion models of reaction time. Psychol. Rev. 106(2), 261–300 (1999) Google Scholar
  158. Ratcliff, R., Cherian, A., Segraves, M.A.: A comparison of macaque behavior and superior colliculus neuronal activity to predictions from models of two choice decisions. J. Neurophysiol. 90, 1392–1407 (2003) Google Scholar
  159. Ratcliff, R., Hasegawa, Y.T., Hasegawa, R.P., Smith, P.L., Segraves, M.A.: Dual-diffusion model for single-cell recording data from the superior colliculus in a brightness-discrimination task. J. Neurophysiol. 97, 1756–1774 (2006) Google Scholar
  160. Renart, A., Brunel, N., Wang, X.-J.: Mean-field theory of recurrent cortical networks: from irregularly spiking neurons to working memory. In: Feng, J. (ed.) Computational Neuroscience: A Comprehensive Approach. CRC Press, Boca Raton (2003) Google Scholar
  161. Rieke, F., Bialek, W., Warland, D., De Ruyter van Steveninck, R.: Spikes: Exploring the Neural Code. MIT Press, Cambridge (1997) Google Scholar
  162. Rinzel, J.: Excitation dynamics: insights from simplified membrane models. Fed. Proc. 37, 2944–2946 (1985) Google Scholar
  163. Roitman, J., Shadlen, M.: Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002) Google Scholar
  164. Rorie, A., Gao, J., McClelland, J.L., Newsome, W.T.: Integration of sensory and reward information during perceptual decision-making in lateral intraparietal cortex (LIP). PLoS ONE 5(2), e9308 (2010) Google Scholar
  165. Roxin, A., Ledberg, A.: Neurobiological models of two-choice decision making can be reduced to a one-dimensional nonlinear diffusion equation. PLoS Comput. Biol. 4(3), e10000146 (2008) MathSciNetGoogle Scholar
  166. Rumelhart, D.E., McClelland, J.L.: Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, Cambridge (1986) Google Scholar
  167. Sara, S.J.: The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci. 10, 211–223 (2009) Google Scholar
  168. Schall, J.D.: Neural basis of deciding, choosing and acting. Nat. Rev. Neurosci. 2, 33–42 (2001) Google Scholar
  169. Schultz, W., Dayan, P., Montague, P.R.: A neural substrate of prediction and reward. Science 275, 1593–1599 (1997) Google Scholar
  170. Schultz, W., Tremblay, K.L., Hollerman, J.R.: Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb. Cortex 10, 272–284 (2000) Google Scholar
  171. Seidemann, E., Meilijson, I., Abeles, M., Bergman, H., Vaadia, E.: Simultaneously recorded single units in the frontal cortex go through sequences of discrete and stable states in monkeys performing a delayed localization task. J. Neurosci. 16(2), 752–768 (1996) Google Scholar
  172. Servan-Schreiber, D., Printz, H., Cohen, J.D.: A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science 249, 892–895 (1990) Google Scholar
  173. Seung, S.: Connectome: How the Brain’s Wiring Makes Us Who We Are. Houghton Mifflin Harcourt, New York (2012) Google Scholar
  174. Shadlen, M.N., Newsome, W.T.: Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001) Google Scholar
  175. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948), also pp. 623–656. Reprinted in (Knill and Pouget 2004; Liu et al. 2009; Yu et al. 2009; Bejjanki et al. 2011; Dayan 2012; Solway and Botvinick 2012) MATHMathSciNetGoogle Scholar
  176. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949) MATHGoogle Scholar
  177. Sherman, A., Rinzel, J., Keizer, J.: Emergence of organized bursting in clusters of pancreatic β-cells by channel sharing. Biophys. J. 54, 411–425 (1988) Google Scholar
  178. Simen, P., Contreras, D., Buck, C., Hu, P., Holmes, P., Cohen, J.D.: Reward rate optimization in two-alternative decision making: empirical tests of theoretical predictions. J. Exp. Psychol. Hum. Percept. Perform. 35(6), 1865–1897 (2009) Google Scholar
  179. Smith, P.L., Ratcliff, R.: Psychology and neurobiology of simple decisions. Trends Neurosci. 27(3), 161–168 (2004) Google Scholar
  180. Soetens, E., Boer, L., Hueting, J.: Expectancy or automatic facilitation? Separating sequential effects in two-choice reaction times. J. Exp. Psychol. Hum. Percept. Perform. 11, 598–616 (1985) Google Scholar
  181. Solway, A., Botvinick, M.M.: Goal-directed decision making as probabilistic inference: a computational framework and potential neural correlates. Psychol. Rev. 119, 120–154 (2012) Google Scholar
  182. Stein, R.: A theoretical analysis of neuronal variability. Biophys. J. 5, 173–194 (1965) Google Scholar
  183. Stone, M.: Models for choice-reaction time. Psychometrika 25, 251–260 (1960) MATHGoogle Scholar
  184. Sutton, R.: Learning to predict by the method of temporal differences. Mach. Learn. 3, 9–44 (1988) Google Scholar
  185. Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press, Cambridge (1998) Google Scholar
  186. Swinehard, C., Abbott, L.F.: Dimensional reduction in reward-based learning. Netw. Comput. Neural Syst. 17, 235–252 (2006) Google Scholar
  187. Torta, A.B.L., Komorowskie, R.W., Manns, J.R., Kopell, N.J., Eichenbaum, H.: Theta-gamma coupling increases during the learning of item-context associations. Proc. Natl. Acad. Sci. USA 106(49), 20942–20947 (2009) Google Scholar
  188. Toth, T.I., Daun-Gruhn, S.: A putative neuronal network controlling the activity of the leg motoneurons of the stick insect. NeuroReport 22(18), 943–946 (2011) Google Scholar
  189. Tytell, E.D., Hsu, C.-Y., Williams, T.L., Cohen, A.H., Fauci, L.J.: Interactions between body stiffness, muscle activation, and fluid environment in a neuromechanical model of lamprey swimming. Proc. Natl. Acad. Sci. 107(46), 19832–19837 (2010) Google Scholar
  190. Tytell, E.D., Holmes, P., Cohen, A.H.: Spikes alone do not behavior make: why neuroscience needs biomechanics. Curr. Opin. Neurobiol. 21, 816–822 (2011) Google Scholar
  191. Uhlhaas, P.J., Singer, W.: Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 11, 100–113 (2010) Google Scholar
  192. Usher, M., Cohen, J.D.: Short term memory and selection processes in a frontal-lobe model. In: Heinke, D., Humphreys, G.W., Olson, A.J. (eds.) Connectionist models in cognitive neuroscience: the 5th neural computation and psychology workshop, pp. 78–91. Springer, Birmingham (1999) Google Scholar
  193. Usher, M., McClelland, J.L.: On the time course of perceptual choice: the leaky competing accumulator model. Psychol. Rev. 108, 550–592 (2001) Google Scholar
  194. van Ravenzwaaij, D., van der Maas, H.L.J., Wagenmakers, E.J.: Optimal decision making in neural inhibition models. Psychol. Rev. 119(1), 201–215 (2012) Google Scholar
  195. Várkonyi, P.L., Kiemel, T., Hoffman, K., Cohen, A.H., Holmes, P.: On the derivation and tuning of phase oscillator models for lamprey central pattern generators. J. Comput. Neurosci. 25, 245–261 (2008) MathSciNetGoogle Scholar
  196. von Neumann, J.: The Computer and the Brain, 2nd edn. Yale University Press, New Haven (1958). With a foreward by P.M. and Churchland P.S. (2000) MATHGoogle Scholar
  197. Wald, A., Wolfowitz, J.: Optimum character of the sequential probability ratio test. Ann. Math. Stat. 19, 326–339 (1948) MATHMathSciNetGoogle Scholar
  198. Wallen, P., Ekeberg, O., Lansner, A., Brodin, L., Traven, H., Grillner, S.: A computer-based model for realistic simulations of neural networks. II. The segmental network generating locomotor rhythmicity in the lamprey. J. Neurophysiol. 68, 1939–1950 (1992) Google Scholar
  199. Wang, X.-J.: Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci. 19, 9587–9603 (1999) Google Scholar
  200. Wang, X.-J.: Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955–968 (2002) Google Scholar
  201. Wang, X.-J.: Decision making in recurrent neuronal circuits. Neuron 60, 215–234 (2008) Google Scholar
  202. Wang, X.-J.: Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195–1268 (2010) Google Scholar
  203. Whittington, M.A., Traub, R.D., Kopell, N.: Diverse origins of network rhythms in cortical local circuits. In: Short Course 2, Rhythms of the Neocortex: Where do They Come From and What Are They Good For? Society for Neuroscience (2009).
  204. Wiener, N.: Cybernetics: Or Control and Communication in the Animal and the Machine, 2nd edn. MIT Press, Cambridge (1948). 1961 Google Scholar
  205. Wilson, H.: Spikes, Decisions and Actions: The Dynamical Foundations of Neuroscience. Oxford University Press, Oxford (1999) MATHGoogle Scholar
  206. Winfree, A.T.: The Geometry of Biological Time, 2nd edn. Springer, New York (2001) MATHGoogle Scholar
  207. Wolpert, D.: Probabilistic models in human sensorimotor control. Hum. Mov. Sci. 26, 511–524 (2007) Google Scholar
  208. Wong, K.F., Wang, X.-J.: A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26(4), 1314–1328 (2006) Google Scholar
  209. Yu, A.J., Cohen, J.D.: Sequential effects: superstition or rational behavior? In: Platt, J.C., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems, vol. 21, pp. 1873–1880. MIT Press, Cambridge (2009) Google Scholar
  210. Yu, A.J., Dayan, P., Cohen, J.D.: Dynamics of attentional selection under conflict: toward a rational Bayesian account. J. Exp. Psychol. Hum. Percept. Perform. 35(3), 700–717 (2009) Google Scholar
  211. Zacksenhouse, M., Holmes, P., Bogacz, R.: Robust versus optimal strategies for two-alternative forced choice tasks. J. Math. Psychol. 54, 230–246 (2010) MATHMathSciNetGoogle Scholar
  212. Zhang, M., Barash, S.: Persistent LIP activity in memory antisaccades: working memory for a sensorimotor transformation. J. Neurophysiol. 91, 1424–1441 (2004) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace Engineering, Program in Applied and Computational MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Princeton Neuroscience InstitutePrinceton UniversityPrincetonUSA

Personalised recommendations