Abstract
We examine in detail the relative equilibria in the planar four-vortex problem where two pairs of vortices have equal strength, that is, Γ 1=Γ 2=1 and Γ 3=Γ 4=m where \(m \in \mathbb{R} - \{0\}\) is a parameter. One main result is that, for m>0, the convex configurations all contain a line of symmetry, forming a rhombus or an isosceles trapezoid. The rhombus solutions exist for all m but the isosceles trapezoid case exists only when m is positive. In fact, there exist asymmetric convex configurations when m<0. In contrast to the Newtonian four-body problem with two equal pairs of masses, where the symmetry of all convex central configurations is unproven, the equations in the vortex case are easier to handle, allowing for a complete classification of all solutions. Precise counts on the number and type of solutions (equivalence classes) for different values of m, as well as a description of some of the bifurcations that occur, are provided. Our techniques involve a combination of analysis, and modern and computational algebraic geometry.
This is a preview of subscription content, access via your institution.








References
Albouy, A.: The symmetric central configurations of four equal masses. In: Hamiltonian Dynamics and Celestial Mechanics, Seattle, WA, 1995. Contemp. Math., vol. 198, pp. 131–135. Amer. Math. Soc., Providence (1996)
Albouy, A., Chenciner, A.: Le problème des n corps et les distances mutuelles. Invent. Math. 131(1), 151–184 (1997)
Albouy, A., Fu, Y., Sun, S.: Symmetry of planar four-body convex central configurations. Proc. R. Soc. A, Math. Phys. Eng. Sci. 464(2093), 1355–1365 (2008)
Albouy, A., Cabral, H.E., Santos, A.A.: Some problems on the classical n-body problem. Celest. Mech. Dyn. Astron. 113, 369–375 (2012)
Aref, H.: Point vortex dynamics: a classical mathematics playground. J. Math. Phys. 48(6), 065401 (2007a), 23 pp.
Aref, H.: Vortices and polynomials. Fluid Dyn. Res. 39, 5–23 (2007b)
Aref, H., Newton, P.K., Stremler, M.A., Tokieda, T., Vainchtein, D.L.: Vortex crystals. Adv. Appl. Mech. 39, 1–79 (2003)
Barros, J.F., Leandro, E.S.G.: The set of degenerate central configurations in the planar restricted four-body problem. SIAM J. Math. Anal. 43(2), 634 (2011)
Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Springer, Berlin (1998)
Cardano, G.: Artis magnae. Johann Petreius, Nuremberg (1545)
Celli, M.: Sur les mouvements homographiques de n corps associés à des masses de signe quelconque, le cas particulier où la somme des masses est nulle, et une application à la recherche de choréographies perverse. Ph.D. thesis, Université Paris 7, France (2005)
Chen, C., Davenport, J.H., May, J.P., Maza, M.M., Xia, B., Xiao, R.: Triangular decomposition of semi-algebraic systems. In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, ISSAC’10, pp. 187–194. ACM Press, New York (2010)
Chen, Y., Kolokolnikov, T., Zhirov, D.: Collective behavior of large number of vortices in the plane. Proc. R. Soc. A 469(2156), 1–6 (2013)
Cors, J.M., Roberts, G.E.: Four-body co-circular central configurations. Nonlinearity 25(2), 343–370 (2012)
Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, Berlin (2007)
Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-3—a computer algebra system for polynomial computations (2011). http://www.singular.uni-kl.de
Dziobek, O.: Über einen merkwürdigen fall des vielkörperproblems. Astron. Nachr. 152, 33 (1900)
Hampton, M.: Concave central configurations in the four-body problem. Ph.D. thesis, University of Washington, Seattle (2002)
Hampton, M., Moeckel, R.: Finiteness of relative equilibria of the four-body problem. Invent. Math. 163(2), 289–312 (2005)
Hampton, M., Moeckel, R.: Finiteness of stationary configurations of the four-vortex problem. Trans. Am. Math. Soc. 361(3), 1317–1332 (2009)
Kirchhoff, G.: Vorlesungen über mathematische physik. B.G. Teubner, Leipzig (1883)
Lord Kelvin: On vortex atoms. Proc. R. Soc. Edinb. 6, 94–105 (1867)
Meyer, K., Schmidt, D.: Bifurcations of relative equilibria in the n-body and Kirchhoff problems. SIAM J. Math. Anal. 19(6), 1295–1313 (1988)
Meyer, K.R., Hall, G.R., Offin, D.: Introduction to Hamiltonian Dynamical Systems and the n-Body Problem, 2nd edn. Springer, Berlin (2009)
Moulton, F.R.: The straight line solutions of the problem of n bodies. Ann. Math. 12(1), 1–17 (1910)
Newton, P.K.: The n-Vortex Problem: Analytical Techniques. Springer, Berlin (2001)
Newton, P.K., Chamoun, G.: Construction of point vortex equilibria via Brownian ratchets. Proc. R. Soc. A 463, 1525–1540 (2007)
O’Neil, K.A.: Stationary configurations of point vortices. Trans. Am. Math. Soc. 302(2), 383–425 (1987)
Palmore, J.: Relative equilibria of vortices in two dimensions. Proc. Natl. Acad. Sci. USA 79(2), 716–718 (1982)
Perez-Chavela, E., Santoprete, M.: Convex four-body central configurations with some equal masses. Arch. Ration. Mech. Anal. 185(3), 481–494 (2007)
Roberts, G.E.: Stability of relative equilibria in the planar n-vortex problem. SIAM J. Appl. Dyn. Syst. 12(2), 1114–1134 (2013)
Schmidt, D.: Central configurations and relative equilibria for the n-body problem. In: Classical and Celestial Mechanics (Recife, 1993/1999), pp. 1–33. Princeton Univ. Press, Princeton (2002)
Spang, S.: A zero-dimensional approach to compute real radicals. Comput. Sci. J. Mold. 16(1), 64–92 (2008)
Spang, S.: realrad.lib. A singular 3-1-3 library for computing real radicals (2011)
Stein, W.A., et al.: Sage mathematics software (Version 4.6.2) (2011). http://www.sagemath.org
Uspensky, J.V.: Theory of Equations. McGraw-Hill Book Co., New York (1948)
Acknowledgements
Part of this work was carried out when the authors were visiting the American Institute of Mathematics in May of 2011. We gratefully acknowledge their hospitality and support. We would also like to thank the two referees for many helpful suggestions and comments. GR was supported by a grant from the National Science Foundation (DMS-1211675), and MS was supported by a NSERC Discovery Grant.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by P. Newton.
Rights and permissions
About this article
Cite this article
Hampton, M., Roberts, G.E. & Santoprete, M. Relative Equilibria in the Four-Vortex Problem with Two Pairs of Equal Vorticities. J Nonlinear Sci 24, 39–92 (2014). https://doi.org/10.1007/s00332-013-9184-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00332-013-9184-3
Keywords
- Relative equilibria
- n-vortex problem
- Hamiltonian systems
- Symmetry
Mathematics Subject Classification
- 76B47
- 70F10
- 13P10
- 13P15
- 70H12