Anderson, T.W.: The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Am. Math. Soc. 6, 170–176 (1955)
Article
MATH
Google Scholar
Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillations. Dover, New York (1987)
Google Scholar
Appleby, J.A., Rodkina, A., Roeger, L.-I.W.: Stability of a limit cycle for a planar system with stochastic perturbations. Funct. Differ. Equ. 16(1–2), 11–28 (2009)
MathSciNet
Google Scholar
Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd edn. Springer, New York (1988)
Book
Google Scholar
Arnold, L.: Random Dynamical Systems. Springer, Berlin (1998)
Book
MATH
Google Scholar
Arnold, L., Imkeller, P., Sri Namachchivaya, N.: The asymptotic stability of a noisy non-linear oscillator. J. Sound Vib. 269, 1003–1029 (2004)
MathSciNet
Article
MATH
Google Scholar
Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A, Math. Gen. 14, L453–L457 (1981)
MathSciNet
Article
Google Scholar
Berglund, N., Gentz, B.: Noise-Induced Phenomena in Slow-Fast Dynamical Systems: A Sample-Paths Approach. Springer, Berlin (2006)
Google Scholar
Berglund, N., Landon, D.: Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh–Nagumo model. arXiv:1105.1278 (2011)
Blagoveshchenskii, Yu.N.: Diffusion processes depending on small parameter. Theory Probab. Appl. 7, 130–146 (1962)
Article
Google Scholar
Chow, S.-N., Hale, J.K.: Methods of Bifurcation Theory. Springer, New York (1982)
Book
MATH
Google Scholar
Day, M.V.: On the exponential law in the small parameter exit problem. Stochastics 8, 297–323 (1983)
MathSciNet
Article
MATH
Google Scholar
DeVille, L., Namachchivaya, N.S., Rapti, Z.: Stability of a stochastic two-dimensional non-Hamiltonian system. SIAM J. Appl. Math. 71(4), 1458–1475 (2013)
Article
Google Scholar
Doi, S., Kumagai, S.: Generation of very slow neuronal rhythms and chaos near the Hopf bifurcation in single neuron models. J. Comput. Neurosci. 19, 325–356 (2005)
MathSciNet
Article
Google Scholar
Freidlin, M.I.: On stable oscillations and equilibriums induced by small noise. J. Stat. Phys. 103(1–2), 283–300 (2001)
MathSciNet
Article
MATH
Google Scholar
Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems, 2nd edn. Springer, New York (1998)
Book
MATH
Google Scholar
Friedman, A.: Stochastic Differential Equations and Applications. Dover, New York (2006)
MATH
Google Scholar
Furstenberg, H., Kesten, H.: Products of random matrices. Ann. Math. Stat. 31, 457–469 (1960)
MathSciNet
Article
MATH
Google Scholar
Goldobin, D.S., Pikovsky, A.: Synchronization and desynchronization of self-sustained oscillators by common noise. Phys. Rev. E 71, 045201 (2005)
MathSciNet
Article
Google Scholar
Gutkin, B.S., Ermentrout, G.B.: Dynamics of membrane excitability determine interspike interval variability: a link between spike generation mechanisms and cortical spike train statistics. Neural Comput. 10(5), 1047–1065 (1998)
Article
Google Scholar
Hale, J.K.: Oscillations in Nonlinear Systems. McGraw-Hill, New York (1963)
MATH
Google Scholar
Hale, J.K.: Ordinary Differential Equations, 2nd edn. Krieger, Melbourne (1980)
MATH
Google Scholar
Has’minskii, R.Z.: Stochastic Stability of Differential Equations. Sijthoff & Noordhoff, Rockville (1980)
Book
Google Scholar
Hitczenko, P., Medvedev, G.S.: Bursting oscillations induced by small noise. SIAM J. Appl. Math. 69(5), 1359–1392 (2009)
MathSciNet
Article
MATH
Google Scholar
Horn, R.A., Johnson, C.A.: Matrix Analysis. Cambridge University Press, Cambridge (1985)
Book
MATH
Google Scholar
Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2007)
Google Scholar
Kesten, H.: Random difference equations and renewal theory for products of random matrices. Acta Math. 131, 207–248 (1973)
MathSciNet
Article
MATH
Google Scholar
Kwapień, S.: A remark on the median and the expectation of convex functions of Gaussian vectors. In: Probability in Banach Spaces IX, pp. 271–272. Birkhäuser, Basel (1994)
Chapter
Google Scholar
Ledoux, M., Talagrand, M.: Probability in Banach Spaces. Springer, Berlin (1991)
Book
MATH
Google Scholar
Lim, S., Rinzel, J.: Noise-induced transitions in slow wave neuronal dynamics. J. Comput. Neurosci. 28(1), 1–17 (2010)
MathSciNet
Article
Google Scholar
Malkin, I.G.: The Theory of Stability of Motion, 2nd edn. Editorial, Moscow (2004a). (in Russian)
Google Scholar
Malkin, I.G.: Methods of Lyapunov and Poincaré in the Theory of Nonlinear Oscillations, 2nd edn. Editorial, Moscow (2004b). (in Russian)
Google Scholar
Mao, X.: Stochastic stabilization and destabilization. Syst. Control Lett. 23, 279–290 (1994)
Article
MATH
Google Scholar
Medvedev, G.S.: Transition to bursting via deterministic chaos. Phys. Rev. Lett. 97, 048102 (2006)
Article
Google Scholar
Medvedev, G.S.: Synchronization of coupled limit cycles. J. Nonlinear Sci. 21(3), 441–464 (2011)
MathSciNet
Article
MATH
Google Scholar
Medvedev, G.S., Yoo, Y.: Chaos at the border of criticality. Chaos 18, 033105 (2008)
MathSciNet
Article
Google Scholar
Medvedev, G.S., Zhuravytska, S.: Shaping bursting by electrical coupling and noise. Biol. Cybern. 106(2), 67–88 (2012a)
MathSciNet
Article
MATH
Google Scholar
Medvedev, G.S., Zhuravytska, S.: The geometry of spontaneous spiking in neuronal networks. J. Nonlinear Sci. 22(5), 689–725 (2012b)
MathSciNet
Article
MATH
Google Scholar
Muratov, C.B., Vanden-Eijnden, E.: Noise-induced mixed-mode oscillations in a relaxation oscillator near the onset of a limit cycle. Chaos 18, 015111 (2008)
MathSciNet
Article
Google Scholar
Muratov, C.B., Vanden-Eijnden, E., E, W.: Self-induced stochastic resonance in excitable systems. Physica D 210, 227–240 (2005)
MathSciNet
Article
MATH
Google Scholar
Øksendal, B.: Stochastic Differential Equations, 6th edn. Springer, Berlin (2003)
Book
Google Scholar
Pontryagin, L.S., Andronov, A.A., Vitt, A.A.: O statitisticheskom rassmotrenii dinamicheskikh sistem. Zh. Èksp. Teor. Fiz. 3(3), 165–180 (1933). (in Russian)
Google Scholar
Shilnikov, L.P., Shilnokov, A.L., Turaev, D.V., Chua, L.O.: Methods of Qualitative Theory in Nonlinear Dynamics, Part I. World Scientific, Singapore (1998)
Book
MATH
Google Scholar
Skorokhod, A.V.: Asymptotic Methods in the Theory of Stochastic Differential Equations. AMS, Providence (1989)
MATH
Google Scholar
Skorokhod, A.V., Hoppensteadt, F.C., Salehi, H.: Random Perturbation Methods. Springer, New York (2002)
MATH
Google Scholar