Skip to main content

A Mathematical Framework for Critical Transitions: Normal Forms, Variance and Applications

Abstract

Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast-subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel–Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator–inhibitor switch from systems biology, a predator–prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel–Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator–inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator–prey model explosive population growth near a codimension-two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Alley, R.B., Marotzke, J., Nordhaus, W.D., Overpeck, J.T., Peteet, D.M., Pielke, R.A. Jr., Pierrehumbert, R.T., Rhines, P.B., Stocker, T.F., Talley, L.D., Wallace, J.M.: Abrupt climate change. Science 299, 2005–2010 (2003)

    Article  Google Scholar 

  2. Andronov, A.A., Leontovich, E.A., Gordon, I.I., Maier, A.G.: Qualitative Theory of Second-Order Dynamical Systems. Wiley, New York (1973)

    Google Scholar 

  3. Arnold, L.: Random dynamical systems. In: Dynamical Systems (Montecatini Terme, 1994), pp. 1–43. Springer, Berlin (1995)

    Chapter  Google Scholar 

  4. Arnold, L.: Random Dynamical Systems. Springer, Berlin (2003)

    Google Scholar 

  5. Arnold, V.I.: Encyclopedia of Mathematical Sciences: Dynamical Systems V. Springer, Berlin (1994)

    Google Scholar 

  6. Ashwin, P., Wieczorek, S., Vitolo, R., Cox, P.: Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system. Philos. Trans. R. Soc. A 370, 1166–1184 (2012)

    Article  Google Scholar 

  7. Barkley, D.: A model for fast computer simulation of waves in excitable media. Physica D 49, 61–70 (1991)

    Article  Google Scholar 

  8. Bazykin, A.D.: In: Khibnik, A.I., Krauskopf, B. (eds.) Nonlinear Dynamics of Interacting Populations. World Scientific, Singapore (1998)

    Google Scholar 

  9. Bender, C.M., Orszag, S.A.: Asymptotic Methods and Perturbation Theory. Springer, Berlin (1999)

    MATH  Google Scholar 

  10. Berglund, N., Gentz, B.: The effect of additive noise on dynamical hysteresis. Nonlinearity 15, 605–632 (2002a)

    MathSciNet  MATH  Article  Google Scholar 

  11. Berglund, N., Gentz, B.: Metastability in simple climate models: pathwise analysis of slowly driven Langevin equations. Stoch. Dyn. 2, 327–356 (2002b)

    MathSciNet  MATH  Article  Google Scholar 

  12. Berglund, N., Gentz, B.: Pathwise description of dynamic pitchfork bifurcations with additive noise. Probab. Theory Relat. Fields 3, 341–388 (2002c)

    MathSciNet  Article  Google Scholar 

  13. Berglund, N., Gentz, B.: Geometric singular perturbation theory for stochastic differential equations. J. Differ. Equ. 191, 1–54 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  14. Berglund, N., Gentz, B.: On the noise-induced passage through an unstable periodic orbit I: two-level model. J. Stat. Phys. 114(5), 1577–1618 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  15. Berglund, N., Gentz, B.: Noise-Induced Phenomena in Slow-Fast Dynamical Systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  16. Berglund, N., Gentz, B.: On the noise-induced passage through an unstable periodic orbit II: the general case (2012). arXiv:1208.2557

  17. Berglund, N., Landon, D.: Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh–Nagumo model. Nonlinearity 25, 2303–2335 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  18. Berglund, N., Gentz, B., Kuehn, C.: Hunting French ducks in a noisy environment. J. Differ. Equ. 252(9), 4786–4841 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  19. Boettinger, C., Hastings, A.: Quantifying limits to detection of early warning for critical transitions. J. R. Soc. Interface 9(75), 2527–2539 (2012)

    Article  Google Scholar 

  20. Brackley, C.A., Ebenhöh, O., Grebogi, C., Kurths, J., de Moura, A., Romano, M.C., Thiel, M.: Introduction to focus issue: dynamics in systems biology. Chaos 20, 045101 (2010)

    Article  Google Scholar 

  21. Broer, H.W., Kaper, T.J., Krupa, M.: Geometric desingularization of a cusp singularity in slow-fast systems with applications to Zeeman’s examples. J. Differ. Equ., 1–46 (2012, submitted). Preprint

  22. Carpenter, S.R., Brock, W.A.: Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 311–318 (2006)

    Article  Google Scholar 

  23. Carpenter, S.R., Brock, W.A., Cole, J.J., Kitchell, J.F., Place, M.L.: Leading indicators of trophic cascades. Ecol. Lett. 11, 128–138 (2008)

    Google Scholar 

  24. Cessi, P.: A simple box model of stochastically forced thermohaline circulation. J. Phys. Oceanogr. 24, 1911–1920 (1994)

    Article  Google Scholar 

  25. Chiba, H.: Periodic orbits and chaos in fast-slow systems with Bogdanov–Takens type fold points. J. Differ. Equ. 250, 112–160 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  26. Clark, J.S., Carpenter, S.R., Barber, M., Collins, S., Dobson, A., Foley, J.A., Lodge, D.M., Pascual, M., Pielke, R. Jr., Pizer, W., Pringle, C., Reid, W.V., Rose, K.A., Sala, O., Schlesinger, W.H., Wall, D.H., Wear, D.: Ecological forecasts: an emerging imperative. Science 293, 657–660 (2001)

    Article  Google Scholar 

  27. Dakos, V., Scheffer, M., van Nes, E.H., Brovkin, V., Petoukhov, V., Held, H.: Slowing down as an early warning signal for abrupt climate change. Proc. Natl. Acad. Sci. USA 105(38), 14308–14312 (2008)

    Article  Google Scholar 

  28. Dakos, V., van Nes, E.H., Donangelo, R., Fort, H., Scheffer, M.: Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol. 3(3), 163–174 (2009)

    Article  Google Scholar 

  29. Dakos, V., Kéfi, M., Rietkerk, M., van Nes, E.H., Scheffer, M.: Slowing down in spatially patterned systems at the brink of collapse. Am. Nat. 177(6), 153–166 (2011)

    Article  Google Scholar 

  30. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    MATH  Book  Google Scholar 

  31. Desroches, M., Guckenheimer, J., Kuehn, C., Krauskopf, B., Osinga, H., Wechselberger, M.: Mixed-mode oscillations with multiple time scales. SIAM Rev. 54(2), 211–288 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  32. Ditlevsen, P.D., Johnsen, S.J.: Tipping points: early warning and wishful thinking. Geophys. Res. Lett. 37, 19703 (2010)

    Article  Google Scholar 

  33. Donangelo, R., Fort, H., Dakos, V., Scheffer, M., Van Nes, E.H.: Early warnings for catastrophic shifts in ecosystems: comparison between spatial and temporal indicators. Int. J. Bifurc. Chaos 20(2), 315–321 (2010)

    Article  Google Scholar 

  34. Drake, J.M., Griffen, B.D.: Early warning signals of extinction in deteriorating environments. Nature 467, 456–459 (2010)

    Article  Google Scholar 

  35. Elger, C.E., Lehnertz, K.: Seizure prediction by non-linear time series analysis of brain electrical activity. Eur. J. Neurosci. 10, 786–789 (1998)

    Article  Google Scholar 

  36. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    MathSciNet  MATH  Article  Google Scholar 

  37. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Springer, Berlin (1998)

    MATH  Book  Google Scholar 

  38. Gardiner, C.: Stochastic Methods, 4th edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  39. Goldbeter, A., Koshland, D.E.: An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. USA 78, 6840–6844 (1981)

    MathSciNet  Article  Google Scholar 

  40. Govaerts, W., Kuznetsov, Yu.A.: Matcont (2010). http://www.matcont.ugent.be/

  41. Grasman, J.: Asymptotic Methods for Relaxation Oscillations and Applications. Springer, Berlin (1987)

    MATH  Book  Google Scholar 

  42. Gross, T., Sayama, H. (eds.): Adaptive Networks: Theory, Models and Applications. Springer, Berlin (2009)

    Google Scholar 

  43. Gross, T., Dommar D’Lima, C.J., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96, 208701 (2006)

    Article  Google Scholar 

  44. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    MATH  Google Scholar 

  45. Guttal, V., Jayaprakash, C.: Impact of noise on bistable ecological systems. Ecol. Model. 201, 420–428 (2007)

    Article  Google Scholar 

  46. Hale, J.K.: Ordinary Differential Equations. Dover, New York (2009)

    Google Scholar 

  47. Hallerberg, S., Kantz, H.: Influence of the event magnitude on the predictability of extreme events. Phys. Rev. E 77, 011108 (2008)

    MathSciNet  Article  Google Scholar 

  48. Hastings, A., Wysham, D.B.: Regime shifts in ecological systems can occur with no warning. Ecol. Lett. 13, 464–472 (2010)

    Article  Google Scholar 

  49. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin (1981)

    MATH  Google Scholar 

  50. Highham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3), 525–546 (2001)

    MathSciNet  Article  Google Scholar 

  51. Hong, H., Stein, J.C.: Differences of opinion, short-sales constraints, and market crashes. Rev. Financ. Stud. 16(2), 487–525 (2003)

    Article  Google Scholar 

  52. Huang, J., Wang, J.: Liquidity and market crashes. Rev. Financ. Stud. 22(7), 2607–2643 (2008)

    Article  Google Scholar 

  53. Imkeller, P., Pavlyukevich, I.: First exit times of SDEs driven by stable Lévy processes. Stoch. Process. Appl. 116(4), 611–642 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  54. Izhikevich, E.: Neural excitability, spiking, and bursting. Int. J. Bifurc. Chaos 10, 1171–1266 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  55. Jensen, H.J.: Self-Organized Criticality. CUP (1998)

    MATH  Google Scholar 

  56. Jones, C.K.R.T.: Geometric singular perturbation theory. In: Dynamical Systems (Montecatini Terme, 1994). Lecture Notes in Mathematics, vol. 1609, pp. 44–118. Springer, Berlin (1995)

    Chapter  Google Scholar 

  57. Kabanov, Y., Pergamenshchikov, S.: Two-Scale Stochastic Systems. Springer, Berlin (2003)

    MATH  Book  Google Scholar 

  58. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  59. Keeling, M.J., Rand, D.A., Morris, A.J.: Correlation models for childhood epidemics. Proc. R. Soc. B 264(1385), 1149–1156 (1997)

    Article  Google Scholar 

  60. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic points—fold and canard points in two dimensions. SIAM J. Math. Anal. 33(2), 286–314 (2001a)

    MathSciNet  MATH  Article  Google Scholar 

  61. Krupa, M., Szmolyan, P.: Extending slow manifolds near transcritical and pitchfork singularities. Nonlinearity 14, 1473–1491 (2001b)

    MathSciNet  MATH  Article  Google Scholar 

  62. Krupa, M., Szmolyan, P.: Geometric analysis of the singularly perturbed fold. In: Multiple-Time-Scale Dynamical Systems. IMA, vol. 122, pp. 89–116 (2001c)

    Chapter  Google Scholar 

  63. Krupa, M., Popovic, N., Kopell, N.: Mixed-mode oscillations in three time-scale systems: a prototypical example. SIAM J. Appl. Dyn. Syst. 7(2), 361–420 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  64. Kuehn, C.: A mathematical framework for critical transitions: bifurcations, fast-slow systems and stochastic dynamics. Physica D 240(12), 1020–1035 (2011)

    MATH  Article  Google Scholar 

  65. Kuehn, C.: Time-scale and noise optimality in self-organized critical adaptive networks. Phys. Rev. E 85(2), 026103-7 (2012)

    MathSciNet  Article  Google Scholar 

  66. Kuehn, C., Zschaler, G., Gross, T.: Early warning signs for critical saddle-escape in complex systems. Preprint (2012)

  67. Kuske, R.: Probability densities for noisy delay bifurcation. J. Stat. Phys. 96(3), 797–816 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  68. Kuznetsov, Yu.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York (2004)

    MATH  Book  Google Scholar 

  69. Lenton, T.M., Held, H., Kriegler, E., Hall, J.W., Lucht, W., Rahmstorf, S., Schellnhuber, H.J.: Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. USA 105(6), 1786–1793 (2008)

    MATH  Article  Google Scholar 

  70. Lindner, B., Schimansky-Geier, L.: Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance. Phys. Rev. E 60(6), 7270–7276 (1999)

    Article  Google Scholar 

  71. Meisel, C., Kuehn, C.: On spatial and temporal multilevel dynamics and scaling effects in epileptic seizures. PLoS ONE 7(2), 1–11 (2012) (e30371)

    Article  Google Scholar 

  72. Mishchenko, E.F., Rozov, N.Kh.: Differential Equations with Small Parameters and Relaxation Oscillations. Plenum, New York (1980) (translated from Russian)

    MATH  Book  Google Scholar 

  73. Mishchenko, E.F., Kolesov, Yu.S., Kolesov, A.Yu., Rozov, N.Kh.: Asymptotic Methods in Singularly Perturbed Systems. Plenum, New York (1994)

    MATH  Book  Google Scholar 

  74. Mormann, F., Andrzejak, R.G., Elger, C.E., Lehnertz, K.: Seizure prediction: the long and winding road. Brain 130, 314–333 (2007)

    Article  Google Scholar 

  75. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)

    Article  Google Scholar 

  76. Neishtadt, A.I.: Persistence of stability loss for dynamical bifurcations. I. Differ. Equ. Transl. 23, 1385–1391 (1987)

    MathSciNet  Google Scholar 

  77. Neishtadt, A.I.: Persistence of stability loss for dynamical bifurcations. II. Differ. Equ. Transl. 24, 171–176 (1988)

    MathSciNet  Google Scholar 

  78. Novak, B., Pataki, Z., Ciliberto, A., Tyson, J.J.: Mathematical model of the cell division cycle of fission yeast. Chaos 11(1), 277–286 (2001)

    MATH  Article  Google Scholar 

  79. Øksendal, B.: Stochastic Differential Equations, 5th edn. Springer, Berlin (2003)

    Book  Google Scholar 

  80. Perko, L.: Differential Equations and Dynamical Systems. Springer, Berlin (2001)

    MATH  Google Scholar 

  81. Rinzel, J.: A formal classification of bursting mechanisms in excitable systems. In: Proc. Int. Congress Math., Berkeley, pp. 1578–1593 (1986)

    Google Scholar 

  82. Scheffer, M.: Critical Transitions in Nature and Society. Princeton University Press, Princeton (2009)

    Google Scholar 

  83. Scheffer, M., Carpenter, S.R.: Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18(12), 648–656 (2003)

    Article  Google Scholar 

  84. Scheffer, M., Bascompte, J., Brock, W.A., Brovkhin, V., Carpenter, S.R., Dakos, V., Held, H., van Nes, E.H., Rietkerk, M., Sugihara, G.: Early-warning signals for critical transitions. Nature 461, 53–59 (2009)

    Article  Google Scholar 

  85. Socha, L.: Linearization Methods for Stochastic Dynamic Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  86. Sowers, R.B.: Random perturbations of canards. J. Theor. Probab. 21, 824–889 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  87. Stommel, H.: Thermohaline convection with two stable regimes of flow. Tellus 13, 224–230 (1961)

    Article  Google Scholar 

  88. Su, J., Rubin, J., Terman, D.: Effects of noise on elliptic bursters. Nonlinearity 17, 133–157 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  89. Szmolyan, P., Wechselberger, M.: Canards in ℝ3. J. Differ. Equ. 177, 419–453 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  90. Thompson, J.M.T., Sieber, J.: Climate tipping as a noisy bifurcation: a predictive technique. IMA J. Appl. Math. 76(1), 27–46 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  91. Touboul, J., Wainrib, G.: Bifurcations of stochastic differential equations with singular diffusion coefficients, pp. 1–39 (2012). arXiv:1205.0172v1

  92. Tyson, J.J., Chen, K.C., Novak, B.: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. In: Current Opinion in Cell Biology, vol. 15, pp. 221–231 (2003)

    Google Scholar 

  93. van Gils, S., Krupa, M., Langford, W.F.: Hopf bifurcation with non-semisimple 1:1 resonance. Nonlinearity 3, 825–850 (1990)

    MathSciNet  MATH  Article  Google Scholar 

  94. van Nes, E.H., Scheffer, M.: Slow recovery from perturbations as generic indicator of a nearby catastrophic shift. Am. Nat. 169(6), 738–747 (2007)

    Article  Google Scholar 

  95. Venegas, J.G., Winkler, T., Musch, G., Vidal Melo, M.F., Layfield, D., Tgavalekos, N., Fischman, A.J., Callahan, R.J., Bellani, G., Harris, R.S.: Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature 434, 777–782 (2005)

    Article  Google Scholar 

  96. Venkadesan, M., Guckenheimer, J., Valero-Cuevas, F.J.: Manipulating the edge of instability. J. Biomech. 40, 1653–1661 (2007)

    Article  Google Scholar 

  97. Veraart, A.J., Faassen, E.J., Dakos, V., van Nes, E.H., Lurling, M., Scheffer, M.: Recovery rates reflect distance to a tipping point in a living system. Nature 481, 357–359 (2012)

    Google Scholar 

  98. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  99. Wolfram Research Inc.: Mathematica Edition: Version 8.0 (2010). Wolfram Research, Inc.

    Google Scholar 

  100. Zagaris, A., Kaper, H.G., Kaper, T.J.: Analysis of the computational singular perturbation method for chemical kinetics. J. Nonlinear Sci. 14, 59–91 (2004)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Martin Zumsande for suggesting the model from systems biology in Sect. 7.3 and Thilo Gross for insightful discussions regarding network dynamics. I also would like to thank two anonymous referees and the editor for many helpful comments that helped to improve the manuscript. Part of this work was supported by the European Commission (EC/REA) via a Marie-Curie International Re-integration Grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christian Kuehn.

Additional information

Communicated by Philip Holmes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuehn, C. A Mathematical Framework for Critical Transitions: Normal Forms, Variance and Applications. J Nonlinear Sci 23, 457–510 (2013). https://doi.org/10.1007/s00332-012-9158-x

Download citation

Keywords

  • Critical transition
  • Tipping point
  • Fast-slow system
  • Invariant manifold
  • Stochastic differential equation
  • Multiple time scales
  • Moment estimates
  • Asymptotic analysis
  • Laplace integral
  • Thermohaline circulation
  • Activator–inhibitor system
  • Adaptive networks
  • SIS-epidemics
  • Bazykin predator–prey model
  • Euler buckling

Mathematics Subject Classification

  • 34F05
  • 34E15
  • 60H10