Journal of Nonlinear Science

, Volume 23, Issue 2, pp 335–342 | Cite as

Quasiperiodic Graphs: Structural Design, Scaling and Entropic Properties

  • B. Luque
  • F. J. Ballesteros
  • A. M. Núñez
  • A. Robledo


A novel class of graphs, here named quasiperiodic, are constructed via application of the Horizontal Visibility algorithm to the time series generated along the quasiperiodic route to chaos. We show how the hierarchy of mode-locked regions represented by the Farey tree is inherited by their associated graphs. We are able to establish, via Renormalization Group (RG) theory, the architecture of the quasiperiodic graphs produced by irrational winding numbers with pure periodic continued fraction. Finally, we demonstrate that the RG fixed-point degree distributions are recovered via optimization of a suitably defined graph entropy.


Quasiperiodicity Complex networks Circle map 

Mathematics Subject Classification

37E10 37E20 



B.L. and A.N. acknowledges support from FIS2009-13690 and S2009ESP-1691 (Spain); F.B. from AYA2006-14056, CSD2007-00060, and AYA2010-22111-C03-02 (Spain); A.R. from CONACyT & DGAPA (PAPIIT IN100311)-UNAM (Mexico).


  1. Campanharo, A.S.L.O., Sirer, M.I., Malmgren, R.D., Ramos, F.M., Amaral, L.A.N.: Duality between time series and networks. PLoS ONE 6, e23378 (2011) CrossRefGoogle Scholar
  2. Donner, R.V., Zou, Y., Donges, J.F., Marwan, N., Kurths, J.: Recurrence networks a novel paradigm for nonlinear time series analysis. New J. Phys. 12, 033025 (2010a) CrossRefGoogle Scholar
  3. Donner, R.V., et al.: Recurrence-based time series analysis by means of complex network methods. Int. J. Bifurct. Chaos 21, 1019 (2010b) MathSciNetCrossRefGoogle Scholar
  4. Donner, R.V., et al.: The geometry of chaotic dynamics. A complex network perspective. Eur. Phys. J. B 84, 653 (2011) MathSciNetCrossRefGoogle Scholar
  5. Hao, B.-H., Zeng, W.-M.: Applied symbolic dynamics and chaos. World Scientific, Singapore (1998) MATHCrossRefGoogle Scholar
  6. Hilborn, R.C.: Chaos and Nonlinear Dynamics. Oxford University Press, New York (1994) MATHGoogle Scholar
  7. Kyriakopoulos, F., Thurner, S.: Directed network representation of discrete dynamical maps. Lect. Notes Comput. Sci. 4488, 625–632 (2007) CrossRefGoogle Scholar
  8. Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuño, J.C.: From time series to complex networks: the visibility graph. Proc. Natl. Acad. Sci. USA 105, 4972 (2008) MathSciNetMATHCrossRefGoogle Scholar
  9. Luque, B., Lacasa, L., Ballesteros, F., Luque, J.: Horizontal visibility graphs: exact results for random time series. Phys. Rev. E 80, 046103 (2009) CrossRefGoogle Scholar
  10. Luque, B., Lacasa, L., Ballesteros, F.J., Robledo, A.: Feigenbaum graphs: a complex network perspective of chaos. PLoS ONE 6, e22411 (2011) CrossRefGoogle Scholar
  11. Luque, B., Lacasa, L., Ballesteros, F.J., Robledo, A.: Analytical properties of horizontal visibility graphs in the Feigenbaum scenario. Chaos 22, 013109 (2012) CrossRefGoogle Scholar
  12. Schroeder, M.: Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. Freeman, New York (1991) MATHGoogle Scholar
  13. Schuster, H.G.: Deterministic Chaos. An Introduction, 2nd revised edn. VCH, Weinheim (1988) Google Scholar
  14. Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic Phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 (1984) CrossRefGoogle Scholar
  15. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Perseus Books Publishing, LLC, Reading (1994) Google Scholar
  16. Xu, X., Zhang, J., Small, M.: Superfamily phenomena and motifs of networks induced from time series. Proc. Natl. Acad. Sci. USA 105, 19601 (2008) MathSciNetMATHCrossRefGoogle Scholar
  17. Zhang, J., Small, M.: Complex network from pseudoperiodic time series: topology versus dynamics. Phys. Rev. Lett. 96, 238701 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • B. Luque
    • 1
  • F. J. Ballesteros
    • 2
  • A. M. Núñez
    • 1
  • A. Robledo
    • 3
  1. 1.Dept. Matemática Aplicada y Estadística, ETSI AeronáuticosUniversidad Politécnica de MadridMadridSpain
  2. 2.Observatori AstronòmicUniversitat de ValènciaValenciaSpain
  3. 3.Instituto de Física y Centro de Ciencias de la ComplejidadUniversidad Nacional Autónoma de MéxicoMéxico D.F.Mexico

Personalised recommendations