Journal of Nonlinear Science

, Volume 22, Issue 4, pp 499–515 | Cite as

Energy-Momentum Stability of Icosahedral Configurations of Point Vortices on a Sphere

  • Paul K. NewtonEmail author
  • Vitalii Ostrovskyi


We investigate the nonlinear stability of the icosahedral relative equilibrium configuration of point vortices on a sphere. The relative equilibrium problem is formulated as a problem of finding the nullspace of the configuration matrix that encodes the geometry of the icosahedron, as in Jamaloodeen and Newton (Proc. Royal Soc. A, Math. Phys. Eng. Sci. 462(2075):3277, 2006). The seven-dimensional nullspace of the configuration matrix, A, associated with the icosahedral geometry gives rise to a basis set of vortex strengths for which the icosahedron stays in relative formation, and we use these values to form the augmented Hamiltonian governing the stability. We choose the basis set made up of (i) one element with equal strength vortices on every vertex of the icosahedron (the uniform icosahedron); (ii) six elements made up of equal and opposite antipodal pairs. We start by proving nonlinear stability of the antipodal vortex pair (by direct methods). Following the methods laid out in Simo et al. (Arch. Ration. Mech. Anal. 115(1):15–59, 1991) and Pekarsky and Marsden (J. Math. Phys. 39(11):5894–5907, 1998) and more generally in Marsden and Ratiu (Introduction to Mechanics and Symmetry, 1999), we then combine our knowledge of the nullspace structure of A with the structure of the underlying Hamiltonian, and analyze the stability of the icosahedron using the energy-momentum method. Because the parameter space is large, we focus on the physically motivated and important case obtained by combining the basis elements into (i) the uniform icosahedron; (ii) a von Kármán vortex street configuration of equal and opposite staggered, evenly spaced latitudinal rows equidistant from the equator (Chamoun et al. in Phys. Fluids 21:116603, 2009), and (iii) the North Pole–South Pole equal and opposite vortex pair. Stability boundaries in a three-parameter space are calculated for linear combinations of these grouped basis configurations.


Stability of point vortices Relative equilibria Point vortex equilibria Energy-momentum method 

Mathematics Subject Classification

76B47 70H14 70E50 37N10 37J25 



We dedicate this paper to the memory of Jerry Marsden, whose work in Hamiltonian mechanics and stability theory laid the groundwork for much that is described in this paper. Support from the National Science Foundation, grant NSF-DMS-0804629, is greatly appreciated.


  1. Aref, H., Newton, P.K., Stremler, M.A., Tokieda, T., Vainchtein, D.L.: Vortex crystals. Adv. Appl. Mech. 39, 1–79 (2003) CrossRefGoogle Scholar
  2. Boatto, S., Cabral, H.E.: Non-linear stability of a latitudinal ring of point vortices on a non-rotating sphere. SIAM J. Appl. Math. 64(1), 216–230 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  3. Bogomolov, V.A.: Dynamics of the vorticity on a sphere. Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, pp. 57–65 (1977) Google Scholar
  4. Borisov, A.V., Kilin, A.A.: Stability of Thomson’s configurations of vortices on a sphere. Regul. Chaotic Dyn. 5, 189–200 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  5. Cabral, H.E., Schmidt, D.S.: Stability of relative equilibria in the problem of N+1 vortices. SIAM J. Math. Anal. 31(2), 231–250 (1999) MathSciNetCrossRefGoogle Scholar
  6. Cabral, H.E., Meyer, K.R., Schmidt, D.S.: Stability and bifurcations for the N+1 vortex problem on the sphere. Regul. Chaotic Dyn. 8(3), 259–282 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  7. Chamoun, G., Kanso, E., Newton, P.K.: Von Kármán vortex streets on a sphere. Phys. Fluids 21, 116603 (2009) CrossRefGoogle Scholar
  8. Crowdy, D.G.: Stuart vortices on a sphere. J. Fluid Mech. 498, 381–402 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  9. Hally, D.: Stability of streets of vortices on surfaces of revolution with a reflection symmetry. J. Math. Phys. 21, 211 (1980) MathSciNetzbMATHCrossRefGoogle Scholar
  10. Humphreys, T., Marcus, P.S.: Vortex street dynamics: the selection mechanism for the areas and locations of Jupiter’s vortices. J. Atmos. Sci. 64, 1318–1333 (2008) CrossRefGoogle Scholar
  11. Jamaloodeen, M.I., Newton, P.K.: The N-vortex problem on a rotating sphere. II. Heterogeneous Platonic solid equilibria. Proc. R. Soc. A, Math. Phys. Eng. Sci. 462(2075), 3277 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  12. Kidambi, R., Newton, P.K.: Motion of three point vortices on a sphere. Physica D 116, 143–175 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  13. Kidambi, R., Newton, P.K.: Point vortex motion on a sphere with solid boundaries. Phys. Fluids 12(3), 581–588 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  14. Kimura, Y., Okamoto, H.: Vortex motion on a sphere. J. Phys. Soc. Jpn. 56, 4203–4206 (1987) MathSciNetCrossRefGoogle Scholar
  15. Kurakin, L.G.: On nonlinear stability of the regular vortex systems on a sphere. Chaos 14(3), 592–602 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  16. Laurent-Polz, F.: Point vortices on the sphere: a case with opposite vortices. Nonlinearity 15, 143–171 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  17. Lewis, D., Ratiu, T.: Rotating n-gon/kn-gon vortex configurations. J. Nonlinear Sci. 6, 385–414 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  18. Lim, C.C., Montaldi, J., Roberts, M.R.: Relative equilibria of point vortices on a sphere. Physica D 148, 97–135 (2001) MathSciNetCrossRefGoogle Scholar
  19. Lim, C.C., Ding, X., Nebus, J.: Vorticity Dynamics, Statistical Mechanics, and Planetary Atmospheres. World Scientific, Singapore (2009) CrossRefGoogle Scholar
  20. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, 2nd edn. Texts in Applied Mathematics, vol. 17. Springer, New York (1999) zbMATHGoogle Scholar
  21. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. Society for Industrial Mathematics, Philadelphia (2000) zbMATHCrossRefGoogle Scholar
  22. Newton, P.K.: The N-Vortex Problem. Analytical Techniques. Applied Mathematical Sciences, vol. 145. Springer, New York (2001) CrossRefGoogle Scholar
  23. Newton, P.K.: The N-vortex problem on a sphere: geophysical mechanisms that break integrability. Theor. Comput. Fluid Dyn. (2009). doi: 10.1007/s00162-009-0109-6 Google Scholar
  24. Newton, P.K., Sakajo, T.: Point vortex equilibria on the sphere via Brownian ratchets. Proc. R. Soc. A 465(2102), 437 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  25. Newton, P.K., Sakajo, T.: Point vortex equilibria and optimal packings of circles on a sphere. Proc. R. Soc. A 467(2102), 1468–1490 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  26. Patrick, G.: Relative equilibria in Hamiltonian systems: the dynamic interpretation of nonlinear stability on a reduced phase space. J. Geom. Phys. 9, 111–119 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  27. Pekarsky, S., Marsden, J.E.: Point vortices on a sphere: stability of relative equilibria. J. Math. Phys. 39(11), 5894–5907 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  28. Polvani, L.M., Dritschel, D.G.: Wave and vortex dynamics on the surface of a sphere. J. Fluid Mech. 255, 35–64 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  29. Sakajo, T.: Transition of global dynamics of a polygonal vortex ring on a sphere with pole vortices. Physica D 196, 243–264 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  30. Serre, J.P.: Linear Representations of Finite Groups. Springer, New York (1977) zbMATHCrossRefGoogle Scholar
  31. Simo, J.C., Lewis, D., Marsden, J.E.: Stability of relative equilibria. Part I: the reduced energy-momentum method. Arch. Ration. Mech. Anal. 115(1), 15–59 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  32. Surana, A., Crowdy, D.G.: Vortex dynamics in a complex domain on a spherical surface. J. Comput. Phys. 227, 6058–6070 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  33. Zandi, R., Reguera, D., Bruinsma, R.F., Gelbart, W.M., Rudnick, J.: Origin of icosahedral symmetry in viruses. Proc. Natl. Acad. Sci. USA 101, 15556–15560 (2004) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Aerospace & Mechanical Engineering and Department of MathematicsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations