Periodic Travelling Waves and Compactons in Granular Chains
- 262 Downloads
- 11 Citations
Abstract
We study the propagation of an unusual type of periodic travelling waves in chains of identical beads interacting via Hertz’s contact forces. Each bead periodically undergoes a compression phase followed by free flight, due to special properties of Hertzian interactions (fully nonlinear under compression and vanishing in the absence of contact). We prove the existence of such waves close to binary oscillations, and numerically continue these solutions when their wavelength is increased. In the long wave limit, we observe their convergence towards shock profiles consisting of small compression regions close to solitary waves, alternating with large domains of free flight where bead velocities are small. We give formal arguments to justify this asymptotic behavior, using a matching technique and previous results concerning solitary wave solutions. The numerical finding of such waves implies the existence of compactons, i.e. compactly supported compression waves propagating at a constant velocity, depending on the amplitude and width of the wave. The beads are stationary and separated by equal gaps outside the wave, and each bead reached by the wave is shifted by a finite distance during a finite time interval. Below a critical wave number, we observe fast instabilities of the periodic travelling waves, leading to a disordered regime.
Keywords
Granular chain Hertzian contact Hamiltonian lattice Periodic travelling wave Compacton Fully nonlinear dispersionMathematics Subject Classification
37K60 70F45 70K50 70K75 74J30Notes
Acknowledgements
The author is grateful to anonymous referees for several suggestions which essentially improved the paper, in particular for pointing out the question of the existence of compactons. Helpful discussions with J. Malick, B. Brogliato, A.R. Champneys and P.G. Kevrekidis are also acknowledged.
References
- Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. Addison-Wesley, Reading (1987) Google Scholar
- Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions (1964). National Bureau of Standards (10th corrected printing, 1970). www.nr.com MATHGoogle Scholar
- Acary, V., Brogliato, B.: Concurrent multiple impacts modelling: case study of a 3-ball chain. In: Bathe, K.J. (ed.) Proc. of the MIT Conference on Computational Fluid and Solid Mechanics, pp. 1836–1841. Elsevier, Amsterdam (2003) Google Scholar
- Ahnert, K., Pikovsky, A.: Compactons and chaos in strongly nonlinear lattices. Phys. Rev. E 79, 026209 (2009) MathSciNetCrossRefGoogle Scholar
- Aubry, S., Cretegny, T.: Mobility and reactivity of discrete breathers. Physica D 119, 34–46 (1998) MathSciNetMATHCrossRefGoogle Scholar
- Campbell, D.K., et al. (eds.): The Fermi–Pasta–Ulam Problem: The First 50 Years. Chaos, vol. 15 (2005) Google Scholar
- Chatterjee, A.: Asymptotic solutions for solitary waves in a chain of elastic spheres. Phys. Rev. E 59, 5912–5918 (1999) CrossRefGoogle Scholar
- Chicone, C.: Ordinary Differential Equations with Applications. Texts in Applied Mathematics, vol. 34. Springer, Berlin (1999) MATHGoogle Scholar
- Cretegny, T., Aubry, S.: Spatially inhomogeneous time-periodic propagating waves in anharmonic systems. Phys. Rev. B 55, R11929–R11932 (1997) CrossRefGoogle Scholar
- Dennis, J.E. Jr., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM Classics in Applied Mathematics, vol. 16. SIAM, Philadelphia (1996) MATHCrossRefGoogle Scholar
- Dreyer, W., Herrmann, M., Mielke, A.: Micro-macro transition in the atomic chain via Whitham’s modulation equation. Nonlinearity 19, 471–500 (2006) MathSciNetMATHCrossRefGoogle Scholar
- Dreyer, W., Herrmann, M.: Numerical experiments on the modulation theory for the nonlinear atomic chain. Physica D 237, 255–282 (2008) MathSciNetMATHCrossRefGoogle Scholar
- English, J.M., Pego, R.L.: On the solitary wave pulse in a chain of beads. Proc. Am. Math. Soc. 133(6), 1763–1768 (2005) MathSciNetMATHCrossRefGoogle Scholar
- Falcon, E.: Comportements dynamiques associés au contact de Hertz: processus collectifs de collision et propagation d’ondes solitaires dans les milieux granulaires. PhD thesis, Université Claude Bernard Lyon 1 (1997) Google Scholar
- Filip, A.M., Venakides, S.: Existence and modulation of traveling waves in particle chains. Commun. Pure Appl. Math. 52, 693–735 (1999) MathSciNetCrossRefGoogle Scholar
- Fraternali, F., Porter, M.A., Daraio, C.: Optimal design of composite granular protectors. Mech. Adv. Mat. Struct. 17, 1–19 (2010) CrossRefGoogle Scholar
- Friesecke, G., Pego, R.L.: Solitary waves on FPU lattices: I. Qualitative properties, renormalization and continuum limit. Nonlinearity 12, 1601–1627 (1999) MathSciNetMATHCrossRefGoogle Scholar
- Friesecke, G., Pego, R.L.: Solitary waves on FPU lattices: IV. Proof of stability at low energy. Nonlinearity 17, 229–251 (2004) MathSciNetMATHCrossRefGoogle Scholar
- Friesecke, G., Wattis, J.A.: Existence theorem for solitary waves on lattices. Commun. Math. Phys. 161, 391–418 (1994) MathSciNetMATHCrossRefGoogle Scholar
- Fu, G.: An extension of Hertz’s theory in contact mechanics. J. Appl. Mech. 74, 373–375 (2007) MATHCrossRefGoogle Scholar
- Gallavotti, G. (ed.): The Fermi–Pasta–Ulam Problem. A Status Report. Lecture Notes in Physics, vol. 728. Springer, Berlin (2008) MATHGoogle Scholar
- Herrmann, M.: Unimodal wave trains and solitons in convex FPU chains. Proc. R. Soc. Edinb. A 140, 753–785 (2010) MATHCrossRefGoogle Scholar
- Hinch, E.J., Saint-Jean, S.: The fragmentation of a line of ball by an impact. Proc. R. Soc. Lond. Ser. A 455, 3201–3220 (1999) MathSciNetMATHCrossRefGoogle Scholar
- Hoffman, A., Wayne, C.E.: A Simple Proof of the Stability of Solitary Waves in the Fermi–Pasta–Ulam Model Near the KdV Limit (2008). arXiv:0811.2406v1 [nlin.PS]
- Iooss, G.: Travelling waves in the Fermi–Pasta–Ulam lattice. Nonlinearity 13, 849–866 (2000) MathSciNetMATHCrossRefGoogle Scholar
- James, G.: Nonlinear waves in Newton’s cradle and the discrete p-Schrödinger equation. Math. Models Methods Appl. Sci. 21, 2335–2377 (2011) MathSciNetMATHCrossRefGoogle Scholar
- James, G., Kevrekidis, P.G., Cuevas, J.: Breathers in oscillator chains with Hertzian interactions. Physica D (2011, in press). arXiv:1111.1857v1 [nlin.PS]
- Ji, J.-Y., Hong, J.: Existence criterion of solitary waves in a chain of grains. Phys. Lett. A 260, 60–61 (1999) MathSciNetMATHCrossRefGoogle Scholar
- Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985) MATHGoogle Scholar
- Johnson, P.A., Jia, X.: Nonlinear dynamics, granular media and dynamic earthquake triggering. Nature 437, 871–874 (2005) CrossRefGoogle Scholar
- Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. I. Theoretical framework. Proc. R. Soc. A, Math. Phys. Eng. Sci. 464, 3193–3211 (2008) MathSciNetMATHCrossRefGoogle Scholar
- Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. II. Numerical algorithm and simulation results. Proc. R. Soc. A, Math. Phys. Eng. Sci. 465, 1–23 (2009) MathSciNetMATHCrossRefGoogle Scholar
- Ma, W., Liu, C., Chen, B., Huang, L.: Theoretical model for the pulse dynamics in a long granular chain. Phys. Rev. E 74, 046602 (2006) CrossRefGoogle Scholar
- MacKay, R.S.: Solitary waves in a chain of beads under Hertz contact. Phys. Lett. A 251, 191–192 (1999) CrossRefGoogle Scholar
- Nesterenko, V.F.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24, 733–743 (1983) CrossRefGoogle Scholar
- Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, Berlin (2001) Google Scholar
- Pankov, A.: Travelling Waves and Periodic Oscillations in Fermi–Pasta–Ulam Lattices. Imperial College Press, London (2005) MATHCrossRefGoogle Scholar
- Porter, M., Daraio, C., Szelengowicz, I., Herbold, E.B., Kevrekidis, P.G.: Highly nonlinear solitary waves in heterogeneous periodic granular media. Physica D 238, 666–676 (2009) MATHCrossRefGoogle Scholar
- Rosenau, P., Hyman, J.M.: Compactons: solitons with finite wavelength. Phys. Rev. Lett. 70, 564 (1993) MATHCrossRefGoogle Scholar
- Rosenau, P., Schochet, S.: Compact and almost compact breathers: a bridge between an anharmonic lattice and its continuum limit. Chaos 15, 015111 (2005) MathSciNetCrossRefGoogle Scholar
- Schmittbuhl, J., Vilotte, J.-P., Roux, S.: Propagative macrodislocation modes in an earthquake fault model. Europhys. Lett. 21, 375–380 (1993) CrossRefGoogle Scholar
- Sen, S., Hong, J., Bang, J., Avalos, E., Doney, R.: Solitary waves in the granular chain. Phys. Rep. 462, 21–66 (2008) MathSciNetCrossRefGoogle Scholar
- Sen, S., Manciu, M., Wright, J.D.: Soliton-like pulses in perturbed and driven hertzian chains and their possible applications in detecting buried impurities. Phys. Rev. E 57, 2386–2397 (1998) CrossRefGoogle Scholar
- Sepulchre, J.-A., MacKay, R.S.: Localized oscillations in conservative or dissipative networks of weakly coupled autonomous oscillators. Nonlinearity 10, 679–713 (1997) MathSciNetMATHCrossRefGoogle Scholar
- Starosvetsky, Y., Vakakis, A.F.: Traveling waves and localized modes in one-dimensional homogeneous granular chains with no precompression. Phys. Rev. E 82, 026603 (2010) MathSciNetCrossRefGoogle Scholar
- Stefanov, A., Kevrekidis, P.G.: On the existence of solitary traveling waves for generalized hertzian chains. J. Nonlinear Sci. (2012). doi: 10.1007/s00332-011-9119-9 Google Scholar