Abstract
This paper is concerned with the modeling and analysis of quantum dissipation phenomena in the Schrödinger picture. More precisely, we do investigate in detail a dissipative, nonlinear Schrödinger equation somehow accounting for quantum Fokker–Planck effects, and see how it is drastically reduced to a simpler logarithmic equation via a nonlinear gauge transformation in such a way that the physics underlying both problems keeps unaltered. From a mathematical viewpoint, this allows for a more easily achievable analysis regarding the local wellposedness of the initial-boundary value problem. This simplification requires the performance of the polar (modulus argument) decomposition of the wavefunction, which is rigorously attained (for the first time to the best of our knowledge) under quite reasonable assumptions.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
Amrouche, C., Girault, V.: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Checoslov. Math. J. 44, 109–140 (1994)
Amrouche, C., Ciarlet, P.G., Ciarlet, P., Jr.: Vector and scalar potentials, Poincaré’s theorem and Korn’s inequality. C. R. Acad. Sci. Paris, Ser. I 345, 603–608 (2007)
Antonelli, P., Marcati, P.: On the finite energy weak solutions to a system in quantum fluid dynamics. Commun. Math. Phys. 287, 657–686 (2009)
Arnold, A., López, J.L., Markowich, P.A., Soler, J.: An analysis of quantum Fokker–Planck models: a Wigner function approach. Rev. Mat. Iberoam. 20, 771–814 (2004)
Arnold, A., Dhamo, E., Mancini, C.: The Wigner–Poisson–Fokker–Planck system: global-in-time solutions and dispersive effects. Ann. Inst. Henri Poincaré C, Anal. Non Linéaire 24, 645–676 (2007)
Auberson, G., Sabatier, P.C.: On a class of homogeneous nonlinear Schrödinger equations. J. Math. Phys. 35, 4028–4040 (1994)
Babin, A., Figotin, A.: Some mathematical problems in a neoclassical theory of electric charges. Discrete Contin. Dyn. Syst., Ser. A 27, 1283–1326 (2010)
Bacciagaluppi, G.: Nelsonian mechanics revisited. Found. Phys. Lett. 12, 1–16 (1999)
Bialynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. 100, 62–93 (1976)
Brezis, H.: Analyse Fonctionnelle. Masson, Paris (1983)
Cañizo, J.A., López, J.L., Nieto, J.: Global L 1 theory and regularity of the 3D nonlinear Wigner–Poisson–Fokker–Planck system. J. Differ. Equ. 198, 356–373 (2004)
Cazenave, T.: Stable solutions of the logarithmic Schrödinger equation. Nonlinear Anal. TMA 7, 1127–1140 (1983)
Cazenave, T.: An Introduction to Nonlinear Schrödinger Equations. Textos de Métodos Matemáticos, vol. 22 (1989). Rio de Janeiro
Cazenave, T., Haraux, A.: Equations d’évolution avec non linéarité logarithmique. Ann. Fac. Sci. Univ. Toulouse 2, 21–55 (1980)
Cid, C., Dolbeault, J.: Defocusing nonlinear Schrödinger equation: confinement, stability and asymptotic stability. Technical report (2001)
Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness for Schrödinger equations with derivative. SIAM J. Math. Anal. 33, 649–669 (2001)
Cufaro Petroni, N., De Martino, S., De Siena, S., Illuminati, F.: Stochastic–hydrodynamic model of halo formation in charged particle beams. Phys. Rev. Spec. Top., Accel. Beams 6, 034206 (2003)
Davidson, M.P.: A model for the stochastic origins of Schrödinger’s equation. J. Math. Phys. 20, 1865–1869 (1979)
Davidson, M.P.: Comments on the nonlinear Schrödinger equation. Il Nuovo Cimento B V116B, 1291–1296 (2001)
De Martino, S., Lauro, G.: Soliton-like solutions for a capillary fluid. In: Proceedings of the 12th Conference on WASCOM, pp. 148–152 (2003)
De Martino, S., Falanga, M., Godano, C., Lauro, G.: Logarithmic Schrödinger-like equation as a model for magma transport. Europhys. Lett. 63, 472–475 (2003)
Doebner, H.D., Goldin, G.A.: On a general nonlinear Schrödinger equation admitting diffusion currents. Phys. Lett. A 162, 397–401 (1992)
Doebner, H.D., Goldin, G.A., Nattermann, P.: A family of nonlinear Schrödinger equations: linearizing transformations and resulting structure. In: Antoine, J.-P., et al. (eds.) Quantization, Coherent States and Complex Structures, pp. 27–31. Plenum, New York (1996)
Fényes, I.: Eine wahrscheinlichkeitstheoretische begrundung und interpretation der Quantenmechanik. Z. Phys. 132, 81–103 (1952)
Garbaczewski, P.: Modular Schrödinger equation and dynamical duality. Phys. Rev. E 78, 031101 (2008)
Guerra, F.: Structural aspects of stochastic mechanics and stochastic field theory. Phys. Rep. 77, 263–312 (1981)
Guerra, F., Pusterla, M.: A nonlinear Schrödinger equation and its relativistic generalization from basic principles. Lett. Nuovo Cimento 34, 351–356 (1982)
Guerrero, P., López, J.L., Nieto, J.: Global H 1 solvability of the 3D logarithmic Schrödinger equation. Nonlinear Anal., Real World Appl. 11, 79–87 (2010)
Guerrero, P., López, J.L., Montejo-Gámez, J., Nieto, J.: A wavefunction description of stochastic–mechanical Fokker–Planck dissipation: derivation, stationary dynamics, and numerical approximation. Preprint (2011)
Jüngel, A., Mariani, M.C., Rial, D.: Local existence of solutions to the transient quantum hydrodynamic equations. Math. Models Methods Appl. Sci. 12, 485–495 (2002)
Kostin, M.D.: On the Schrödinger-Langevin equation. J. Chem. Phys. 57, 3589–3591 (1972)
Kostin, M.D.: Friction and dissipative phenomena in quantum mechanics. J. Stat. Phys. 12, 145–151 (1975)
Lauro, G.: A note on a Korteweg fluid and the hydrodynamic form of the logarithmic Schrödinger equation. Geophys. Astrophys. Fluid Dyn. 102, 373–380 (2008)
Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)
López, J.L.: Nonlinear Ginzburg–Landau-type approach to quantum dissipation. Phys. Rev. E 69, 026110 (2004)
López, J.L., Montejo-Gámez, J.: A hydrodynamic approach to multidimensional dissipation-based Schrödinger models from quantum Fokker–Planck dynamics. Physica D 238, 622–644 (2009)
Nattermann, P., Scherer, W.: Nonlinear gauge transformations and exact solutions of the Doebner–Goldin equation. In: Doebner, H.D., et al. (eds.) Nonlinear, Deformed and Irreversible Quantum Systems, pp. 188–199. World Scientific, Singapore (1995)
Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966)
Ozawa, T.: On the nonlinear Schrödinger equations of derivative type. Indiana Univ. Math. J. 45, 137–163 (1996)
Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)
Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1966)
Sanin, A.L., Smirnovsky, A.A.: Oscillatory motion in confined potential systems with dissipation in the context of the Schrödinger–Langevin–Kostin equation. Phys. Lett. A 372, 21–27 (2007)
Teismann, H.: Square-integrable solutions to a family of nonlinear Schrödinger equations from nonlinear quantum theory. Rep. Math. Phys. 56, 291–310 (2005)
Wallstrom, T.C.: Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations. Phys. Rev. A 49, 1613–1617 (1994)
Acknowledgements
This work has been partially supported by Ministerio de Ciencia e Innovación (Spain), Project MTM2008-05271 and Project MTM2011-23384, and Junta de Andalucía, Project FQM-316.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by D. Zenkov.
Rights and permissions
About this article
Cite this article
Guerrero, P., López, J.L., Montejo-Gámez, J. et al. Wellposedness of a Nonlinear, Logarithmic Schrödinger Equation of Doebner–Goldin Type Modeling Quantum Dissipation. J Nonlinear Sci 22, 631–663 (2012). https://doi.org/10.1007/s00332-012-9123-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00332-012-9123-8
Keywords
- Wigner–Fokker–Planck equation
- Doebner–Goldin equations
- Dissipative quantum mechanics
- Nonlinear Schrödinger equation
- Logarithmic nonlinearities
- Local solvability
- Madelung transformation
- Reconstruction of the wavefunction