Skip to main content
Log in

Wellposedness of a Nonlinear, Logarithmic Schrödinger Equation of Doebner–Goldin Type Modeling Quantum Dissipation

Journal of Nonlinear Science Aims and scope Submit manuscript

Cite this article

Abstract

This paper is concerned with the modeling and analysis of quantum dissipation phenomena in the Schrödinger picture. More precisely, we do investigate in detail a dissipative, nonlinear Schrödinger equation somehow accounting for quantum Fokker–Planck effects, and see how it is drastically reduced to a simpler logarithmic equation via a nonlinear gauge transformation in such a way that the physics underlying both problems keeps unaltered. From a mathematical viewpoint, this allows for a more easily achievable analysis regarding the local wellposedness of the initial-boundary value problem. This simplification requires the performance of the polar (modulus argument) decomposition of the wavefunction, which is rigorously attained (for the first time to the best of our knowledge) under quite reasonable assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amrouche, C., Girault, V.: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Checoslov. Math. J. 44, 109–140 (1994)

    MathSciNet  MATH  Google Scholar 

  • Amrouche, C., Ciarlet, P.G., Ciarlet, P., Jr.: Vector and scalar potentials, Poincaré’s theorem and Korn’s inequality. C. R. Acad. Sci. Paris, Ser. I 345, 603–608 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Antonelli, P., Marcati, P.: On the finite energy weak solutions to a system in quantum fluid dynamics. Commun. Math. Phys. 287, 657–686 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Arnold, A., López, J.L., Markowich, P.A., Soler, J.: An analysis of quantum Fokker–Planck models: a Wigner function approach. Rev. Mat. Iberoam. 20, 771–814 (2004)

    Article  MATH  Google Scholar 

  • Arnold, A., Dhamo, E., Mancini, C.: The Wigner–Poisson–Fokker–Planck system: global-in-time solutions and dispersive effects. Ann. Inst. Henri Poincaré C, Anal. Non Linéaire 24, 645–676 (2007)

    Article  MATH  Google Scholar 

  • Auberson, G., Sabatier, P.C.: On a class of homogeneous nonlinear Schrödinger equations. J. Math. Phys. 35, 4028–4040 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Babin, A., Figotin, A.: Some mathematical problems in a neoclassical theory of electric charges. Discrete Contin. Dyn. Syst., Ser. A 27, 1283–1326 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Bacciagaluppi, G.: Nelsonian mechanics revisited. Found. Phys. Lett. 12, 1–16 (1999)

    Article  MathSciNet  Google Scholar 

  • Bialynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. 100, 62–93 (1976)

    Article  MathSciNet  Google Scholar 

  • Brezis, H.: Analyse Fonctionnelle. Masson, Paris (1983)

    MATH  Google Scholar 

  • Cañizo, J.A., López, J.L., Nieto, J.: Global L 1 theory and regularity of the 3D nonlinear Wigner–Poisson–Fokker–Planck system. J. Differ. Equ. 198, 356–373 (2004)

    Article  MATH  Google Scholar 

  • Cazenave, T.: Stable solutions of the logarithmic Schrödinger equation. Nonlinear Anal. TMA 7, 1127–1140 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Cazenave, T.: An Introduction to Nonlinear Schrödinger Equations. Textos de Métodos Matemáticos, vol. 22 (1989). Rio de Janeiro

    Google Scholar 

  • Cazenave, T., Haraux, A.: Equations d’évolution avec non linéarité logarithmique. Ann. Fac. Sci. Univ. Toulouse 2, 21–55 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Cid, C., Dolbeault, J.: Defocusing nonlinear Schrödinger equation: confinement, stability and asymptotic stability. Technical report (2001)

  • Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness for Schrödinger equations with derivative. SIAM J. Math. Anal. 33, 649–669 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Cufaro Petroni, N., De Martino, S., De Siena, S., Illuminati, F.: Stochastic–hydrodynamic model of halo formation in charged particle beams. Phys. Rev. Spec. Top., Accel. Beams 6, 034206 (2003)

    Article  Google Scholar 

  • Davidson, M.P.: A model for the stochastic origins of Schrödinger’s equation. J. Math. Phys. 20, 1865–1869 (1979)

    Article  MathSciNet  Google Scholar 

  • Davidson, M.P.: Comments on the nonlinear Schrödinger equation. Il Nuovo Cimento B V116B, 1291–1296 (2001)

    Google Scholar 

  • De Martino, S., Lauro, G.: Soliton-like solutions for a capillary fluid. In: Proceedings of the 12th Conference on WASCOM, pp. 148–152 (2003)

    Google Scholar 

  • De Martino, S., Falanga, M., Godano, C., Lauro, G.: Logarithmic Schrödinger-like equation as a model for magma transport. Europhys. Lett. 63, 472–475 (2003)

    Article  Google Scholar 

  • Doebner, H.D., Goldin, G.A.: On a general nonlinear Schrödinger equation admitting diffusion currents. Phys. Lett. A 162, 397–401 (1992)

    Article  MathSciNet  Google Scholar 

  • Doebner, H.D., Goldin, G.A., Nattermann, P.: A family of nonlinear Schrödinger equations: linearizing transformations and resulting structure. In: Antoine, J.-P., et al. (eds.) Quantization, Coherent States and Complex Structures, pp. 27–31. Plenum, New York (1996)

    Google Scholar 

  • Fényes, I.: Eine wahrscheinlichkeitstheoretische begrundung und interpretation der Quantenmechanik. Z. Phys. 132, 81–103 (1952)

    MATH  Google Scholar 

  • Garbaczewski, P.: Modular Schrödinger equation and dynamical duality. Phys. Rev. E 78, 031101 (2008)

    Article  MathSciNet  Google Scholar 

  • Guerra, F.: Structural aspects of stochastic mechanics and stochastic field theory. Phys. Rep. 77, 263–312 (1981)

    Article  MathSciNet  Google Scholar 

  • Guerra, F., Pusterla, M.: A nonlinear Schrödinger equation and its relativistic generalization from basic principles. Lett. Nuovo Cimento 34, 351–356 (1982)

    Article  MathSciNet  Google Scholar 

  • Guerrero, P., López, J.L., Nieto, J.: Global H 1 solvability of the 3D logarithmic Schrödinger equation. Nonlinear Anal., Real World Appl. 11, 79–87 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Guerrero, P., López, J.L., Montejo-Gámez, J., Nieto, J.: A wavefunction description of stochastic–mechanical Fokker–Planck dissipation: derivation, stationary dynamics, and numerical approximation. Preprint (2011)

  • Jüngel, A., Mariani, M.C., Rial, D.: Local existence of solutions to the transient quantum hydrodynamic equations. Math. Models Methods Appl. Sci. 12, 485–495 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Kostin, M.D.: On the Schrödinger-Langevin equation. J. Chem. Phys. 57, 3589–3591 (1972)

    Article  Google Scholar 

  • Kostin, M.D.: Friction and dissipative phenomena in quantum mechanics. J. Stat. Phys. 12, 145–151 (1975)

    Article  Google Scholar 

  • Lauro, G.: A note on a Korteweg fluid and the hydrodynamic form of the logarithmic Schrödinger equation. Geophys. Astrophys. Fluid Dyn. 102, 373–380 (2008)

    Article  MathSciNet  Google Scholar 

  • Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • López, J.L.: Nonlinear Ginzburg–Landau-type approach to quantum dissipation. Phys. Rev. E 69, 026110 (2004)

    Article  Google Scholar 

  • López, J.L., Montejo-Gámez, J.: A hydrodynamic approach to multidimensional dissipation-based Schrödinger models from quantum Fokker–Planck dynamics. Physica D 238, 622–644 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Nattermann, P., Scherer, W.: Nonlinear gauge transformations and exact solutions of the Doebner–Goldin equation. In: Doebner, H.D., et al. (eds.) Nonlinear, Deformed and Irreversible Quantum Systems, pp. 188–199. World Scientific, Singapore (1995)

    Google Scholar 

  • Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966)

    Article  Google Scholar 

  • Ozawa, T.: On the nonlinear Schrödinger equations of derivative type. Indiana Univ. Math. J. 45, 137–163 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    Book  MATH  Google Scholar 

  • Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  • Sanin, A.L., Smirnovsky, A.A.: Oscillatory motion in confined potential systems with dissipation in the context of the Schrödinger–Langevin–Kostin equation. Phys. Lett. A 372, 21–27 (2007)

    Article  MATH  Google Scholar 

  • Teismann, H.: Square-integrable solutions to a family of nonlinear Schrödinger equations from nonlinear quantum theory. Rep. Math. Phys. 56, 291–310 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Wallstrom, T.C.: Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations. Phys. Rev. A 49, 1613–1617 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Ministerio de Ciencia e Innovación (Spain), Project MTM2008-05271 and Project MTM2011-23384, and Junta de Andalucía, Project FQM-316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. López.

Additional information

Communicated by D. Zenkov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guerrero, P., López, J.L., Montejo-Gámez, J. et al. Wellposedness of a Nonlinear, Logarithmic Schrödinger Equation of Doebner–Goldin Type Modeling Quantum Dissipation. J Nonlinear Sci 22, 631–663 (2012). https://doi.org/10.1007/s00332-012-9123-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-012-9123-8

Keywords

Mathematics Subject Classification

Navigation