Skip to main content
Log in

Sharp Estimates for the Global Attractor of Scalar Reaction–Diffusion Equations with a Wentzell Boundary Condition

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we derive optimal upper and lower bounds on the dimension of the attractor \(\mathcal{A}_{\mathrm{W}}\) for scalar reaction–diffusion equations with a Wentzell (dynamic) boundary condition. We are also interested in obtaining explicit bounds on the constants involved in our asymptotic estimates, and to compare these bounds to previously known estimates for the dimension of the global attractor \(\mathcal{A}_{K}\), K∈{D,N,P}, of reaction–diffusion equations subject to Dirichlet, Neumann and periodic boundary conditions. The explicit estimates we obtain show that the dimension of the global attractor \(\mathcal {A}_{\mathrm{W}}\) is of different order than the dimension of \(\mathcal{A}_{K}\), for each K∈{D,N,P}, in all space dimensions that are greater than or equal to three.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiki, T.: Multi-dimensional two-phase Stefan problems with nonlinear dynamic boundary conditions. In: Nonlinear Analysis and Applications, Warsaw, 1994. GAKUTO Internat. Ser. Math. Sci. Appl., vol. 7, pp. 1–25. Gakkōtosho, Tokyo (1996)

    Google Scholar 

  • Babin, A., Vishik, M.: Attractors of Evolutionary Equations. Nauka, Moscow (1989)

    Google Scholar 

  • Bandle, C., Von Below, J., Reichel, W.: Parabolic problems with dynamical boundary conditions: eigenvalue expansions and blow up. Rend. Lincei Mat. Appl. 17, 35–67 (2006)

    MathSciNet  MATH  Google Scholar 

  • Cavaterra, C., Gal, C.G., Grasselli, M., Miranville, A.: Phase-field systems with nonlinear coupling and dynamic boundary conditions. Nonlinear Anal. 72, 2375–2399 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Chepyzhov, V., Vishik, M.: Attractors for Equations of Mathematical Physics. AMS, Providence (2002)

    MATH  Google Scholar 

  • Coclite, G.M., Favini, A., Gal, C.G., Goldstein, G.R., Goldstein, J.A., Obrecht, E., Romanelli, S.: The role of Wentzell boundary conditions in linear and nonlinear analysis. In: Sivasundaran, S. (ed.) Advances in Nonlinear Analysis: Theory, Methods and Applications, vol. 3, pp. 279–292. Cambridge Scientific Publishers Ltd., Cambridge (2009). ISBN/ISSN:1-904868-68-2

    Google Scholar 

  • Dillon, R., Maini, P.K., Othmer, H.G.: Pattern formation in generalized Turing systems, I, Steady-state patterns in systems with mixed boundary conditions. J. Math. Biol. 32, 345–393 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Duvaut, G., Lions, P.-L.: Les Inéquations en Mechanique et en Physique. Dunod, Paris (1972)

    Google Scholar 

  • Favini, A., Goldstein, G.R., Goldstein, J.A., Romanelli, S.: The heat equation with general Wentzell boundary conditions. J. Evol. Equ. 2, 1–19 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Feller, W.: The parabolic differential equations and associated semi-groups of transformations. Ann. Math. 55, 468–519 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  • Feller, W.: Generalized second order differential operators and their lateral conditions. Ill. J. Math. 1, 459–504 (1957)

    MathSciNet  MATH  Google Scholar 

  • Filo, J., Luckhaus, S.: Modelling surface runoff and infiltration of rain by an elliptic-parabolic equation coupled with a first-order equation on the boundary. Arch. Ration. Mech. Anal. 146, 157–182 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Francois, G.: Comportement spectral asymptotique provenant de problèmes parabolique sous conditions au bord dynamiques. Doctoral Thesis, ULCO, Calais (2002)

  • Francois, G.: Spectral asymptotics stemming from parabolic equations under dynamical boundary conditions. Asymptot. Anal. 46(1), 43–52 (2006)

    MathSciNet  MATH  Google Scholar 

  • Gal, C.G.: Robust exponential attractors for a conserved Cahn–Hilliard model with singularly perturbed boundary conditions. Commun. Pure Appl. Anal. 7, 819–836 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Gal, C.G.: On a class of degenerate parabolic equations with dynamic boundary conditions. Preprint (2011)

  • Gal, C.G., Grasselli, M.: The nonisothermal Allen–Cahn equation with dynamic boundary conditions. Discrete Contin. Dyn. Syst. 22, 1009–1040 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Gal, C.G., Grasselli, M.: On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Commun. Pure Appl. Anal. 8(2), 689–710 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Gal, C.G., Grasselli, M.: Dissipative Dynamical Systems and Dynamic Boundary Conditions (2011). Book in preparation

  • Gal, C.G., Miranville, A.: Robust exponential attractors and convergence to equilibria for non-isothermal Cahn–Hilliard equations with dynamic boundary conditions. Discrete Contin. Dyn. Syst. Ser. S 2(1), 113–147 (2009a)

    Article  MathSciNet  MATH  Google Scholar 

  • Gal, C.G., Miranville, A.: Uniform global attractors for non-isothermal viscous and non-viscous Cahn–Hilliard equations with dynamic boundary conditions. Nonlinear Anal., Real World Appl. 10(3), 1738–1766 (2009b)

    Article  MathSciNet  MATH  Google Scholar 

  • Gal, C.G., Warma, M.: Well-posedness and the global attractor of some quasilinear parabolic equations with nonlinear dynamic boundary conditions. Differ. Integral Equ. 23, 327–358 (2010)

    MathSciNet  MATH  Google Scholar 

  • Gal, C.G., Goldstein, G.R., Goldstein, J.A., Romanelli, S., Warma, M.: Fredholm alternative, semilinear elliptic problems, and Wentzell boundary conditions (2011, submitted)

  • Galiano, G., Velasco, J.: A dynamic boundary value problem arising in the ecology of mangroves. Nonlinear Anal., Real World Appl. 7, 1129–1144 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Gilardi, G., Miranville, A., Schimperna, G.: Long time behavior of the Cahn–Hilliard equation with irregular potentials and dynamic boundary conditions. Chin. Ann. Math., Ser. B 31(5), 679–712 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Goldstein, G.R.: General boundary conditions for parabolic and hyperbolic operators. In: Romanelli, S., Mininni, R.M., Lucente, S. (eds.) Interplay Between (C 0)-Semigroups and PDEs: Theory and Applications, pp. 91–112. Ist. Naz. Alta Matem., Rome (2004)

    Google Scholar 

  • Goldstein, G.R.: Derivation and physical interpretation of general boundary conditions. Adv. Differ. Equ. 11, 457–480 (2006)

    MATH  Google Scholar 

  • Grasselli, M., Miranville, A., Schimperna, G.: The Caginalp phasefield system with coupled dynamic boundary conditions and singular potentials. Discrete Contin. Dyn. Syst. 28(1), 67–98 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Hale, J.: Asymptotic Behavior of Dissipative Systems. Math. Surveys and Monographs, vol. 25. AMS, Providence (1987)

    Google Scholar 

  • Hale, J., Rocha, C.: Interaction of diffusion and boundary conditions. Nonlinear Anal. 11(5), 633–649 (1987a)

    Article  MathSciNet  MATH  Google Scholar 

  • Hale, J., Rocha, C.: Varying boundary conditions with large diffusivity. J. Math. Pures Appl. 66(2), 139–158 (1987b)

    MathSciNet  MATH  Google Scholar 

  • Holder, E.J., Schaeffer, D.G.: Boundary condition and mode jumping in the von Karman equations. SIAM J. Math. Anal. 15, 446–458 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Igbida, N.: Hele–Shaw type problems with dynamical boundary conditions. J. Math. Anal. Appl. 335, 1061–1078 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Lions, J.L., Temam, R., Wang, S.H.: On the equations of the large-scale ocean. Nonlinearity 5(5), 1007–1053 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Lions, J.L., Manley, O.P., Temam, R., Wang, S.: Physical interpretation of the attractor dimension for the primitive equations of atmospheric circulation. J. Atmos. Sci. 54(9), 1137–1143 (1997)

    Article  MathSciNet  Google Scholar 

  • March, H.W., Weaver, W.: The diffusion problem for a solid in contact with a stirred fluid. Phys. Rev. 31, 1072–1082 (1928)

    Article  Google Scholar 

  • Mei, Z., Theil, F.: Variation of bifurcations along a homotopy from Neumann to Dirichlet problems. Nonlinear Anal. 27, 1381–1395 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Meyries, M.: Maximal regularity in weighted spaces, nonlinear boundary conditions, and global attractors. PhD thesis (2010)

  • Miranville, A., Zelik, S.: Exponential attractors for the Cahn–Hilliard equation with dynamic boundary conditions. Math. Methods Appl. Sci. 28, 709–735 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Miranville, A., Zelik, S.: The Cahn–Hilliard equation with singular potentials and dynamic boundary conditions. Discrete Contin. Dyn. Syst. 28, 275–310 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Morantine, M., Watts, R.G.: Rapid climate change and the deep ocean. Clim. Change 16, 83–97 (1990)

    Article  Google Scholar 

  • Qian, T.-Z., Wang, X., Sheng, P.: A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564, 333–360 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Rodrigues, J.F., Solonnikov, V.A., Yi, F.: On a parabolic system with time derivative in the boundary conditions and related free boundary problems. Math. Ann. 315(1), 61–95 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Schaeffer, D., Golubitsky, M.: Boundary conditions and mode jumping in the buckling of a rectangular plate. Commun. Math. Phys. 69, 209–236 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Shih, C.-W.: Influence of boundary conditions on pattern formation and spatial chaos in lattice systems. SIAM J. Appl. Math. 61, 335–368 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Temam, R.: Infinite Dimensional Dynamical Systems in Physics and Mechanics, 2nd edn. Springer, New York (1997)

    MATH  Google Scholar 

  • Vazquez, J.L., Vitillaro, E.: Heat equation with dynamical boundary conditions of reactive type. Commun. Partial Differ. Equ. 33, 561–612 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Wentzell, A.D.: On boundary conditions for multi-dimensional diffusion processes. Theory Probab. Appl. 4, 164–177 (1959)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciprian G. Gal.

Additional information

Communicated by P. Newton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gal, C.G. Sharp Estimates for the Global Attractor of Scalar Reaction–Diffusion Equations with a Wentzell Boundary Condition. J Nonlinear Sci 22, 85–106 (2012). https://doi.org/10.1007/s00332-011-9109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-011-9109-y

Keywords

Mathematics Subject Classification (2000)

Navigation