Journal of Nonlinear Science

, Volume 22, Issue 1, pp 39–61 | Cite as

An Analytical Framework to Describe the Interactions Between Individuals and a Continuum

  • Rinaldo M. ColomboEmail author
  • Magali Lécureux-Mercier


We consider a discrete set of individual agents interacting with a continuum. Examples might be a predator facing a huge group of preys, or a few shepherd dogs driving a herd of sheep. Analytically, these situations can be described through a system of ordinary differential equations coupled with a scalar conservation law in several space dimensions. This paper provides a complete well-posedness theory for the resulting Cauchy problem. A few applications are considered in detail and numerical integrations are provided.


Mixed P.D.E.–O.D.E. problems Conservation laws Ordinary differential equations 

Mathematics Subject Classification (2000)

35L65 34A12 37N99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Borsche, R., Colombo, R.M., Garavello, M.: On the coupling of systems of hyperbolic conservation laws with ordinary differential equations. Nonlinearity 23, 2749–2770 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  2. Bressan, A., De Lellis, C.: Existence of optimal strategies for a fire confinement problem. Commun. Pure Appl. Math. 62(6), 789–830 (2009) zbMATHCrossRefGoogle Scholar
  3. Capasso, V., Micheletti, A., Morale, D.: Stochastic geometric models, and related statistical issues in tumour-induced angiogenesis. Math. Biosci. 214(1–2), 20–31 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  4. Colombo, R.M., Mercier, M., Rosini, M.D.: Stability and total variation estimates on general scalar balance laws. Commun. Math. Sci. 7(1), 37–65 (2009) MathSciNetzbMATHGoogle Scholar
  5. Colombo, R.M., Herty, M., Mercier, M.: Control of the continuity equation with a non-local flow. ESAIM Control Optim. Calc. Var. 17, 353–379 (2011). doi: 10.1051/cocv/2010007 MathSciNetzbMATHCrossRefGoogle Scholar
  6. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic, Dordrecht (1988). Translated from the Russian Google Scholar
  7. Grimm, J., Grimm, W.: Deutsche Sagen, 2nd edn. Nicolaische Verlagsbichhandlung, Berlin (1865) Google Scholar
  8. Hoff, W.D., van der Horst, M.A., Nudel, C.B., Hellingwerf, K.J.: In: Prokaryotic Phototaxis, vol. 571, pp. 25–49. Springer, Berlin (2009). Chapter 2 Google Scholar
  9. Kružkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228–255 (1970) MathSciNetGoogle Scholar
  10. Lattanzio, C., Maurizi, A., Piccoli, B.: Moving bottlenecks in car traffic flow: a pde-ode coupled model. Preprint (2010) Google Scholar
  11. Lécureux-Mercier, M.: Improved stability estimates on general scalar balance laws. J. Hyperbolic Differ. Equ. (2011, to appear) Google Scholar
  12. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002) CrossRefGoogle Scholar
  13. Serre, D.: Chute libre d’un solide dans un fluide visqueux incompressible. Existence. Jpn. J. Appl. Math. 4(1), 99–110 (1987) zbMATHCrossRefGoogle Scholar
  14. Vázquez, J.L., Zuazua, E.: Large time behavior for a simplified 1D model of fluid-solid interaction. Commun. Partial Differ. Equ. 28(9–10), 1705–1738 (2003) zbMATHCrossRefGoogle Scholar
  15. Witman, G.B.: Chlamydomonas phototaxis. Trends Cell Biol. 3(11), 403–408 (1993) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsBrescia UniversityBresciaItaly
  2. 2.UFR SciencesUniversité d’OrléansOrléans cedex 2France

Personalised recommendations