Skip to main content
Log in

Synchronization of Coupled Limit Cycles

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

A unified approach to the analysis of synchronization in coupled systems of autonomous differential equations is presented in this work. Through a careful analysis of the variational equation of the coupled system we establish a sufficient condition for synchronization in terms of the geometric properties of the local limit cycles and the coupling operator. This result applies to a large class of differential equation models in physics and biology. The stability analysis is complemented by a discussion of numerical simulations of a compartmental model of a neuron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afraimovich, V.S., Verichev, N.N., Rabinovich, M.I.: Radiophys. Quantum Electron. 29, 795 (1986)

    Article  MathSciNet  Google Scholar 

  • Afraimovich, V.S., Chow, S.-N., Hale, J.K.: Synchronization in lattices of coupled oscillators. Physica D 103, 442–451 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Balerini, M., et al.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. USA 105(4), 1232–1237 (2008)

    Article  Google Scholar 

  • Belair, J., Holmes, P.J.: On linearly coupled relaxation oscillations. Q. Appl. Math. 42, 193–219 (1984)

    MathSciNet  MATH  Google Scholar 

  • Belykh, V.N., Belykh, I., Hasler, M.: Connection graph stability method for synchronized coupled chaotic systems. Physica D 195, 159–187 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Belykh, I., Belykh, V., Hasler, M.: Generalized connection graph method for synchronization in asymmetrical networks. Physica D 224, 42–51 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Blekhman, I.I.: Synchronization in Science and Technology. AMSE Press, New York (1988)

    Google Scholar 

  • Brown, R., Rulkov, N.F.: Synchronization of chaotic systems: transverse stability of trajectories in invariant manifolds. Chaos 7(3), 395–413 (1997a)

    Article  MathSciNet  MATH  Google Scholar 

  • Brown, R., Rulkov, N.F.: Designing coupling that guarantees synchronization between identical chaotic systems. Phys. Rev. Lett. 78, 4189–4192 (1997b)

    Article  Google Scholar 

  • Brown, E., Moehlis, J., Holmes, P.: On phase reduction and response dynamics of neural oscillator populations. Neural Comput. 16(4), 673–715 (2004)

    Article  MATH  Google Scholar 

  • Chow, C.C., Kopell, N.: Dynamics of spiking neurons with electrical coupling. Neural Comput. 12, 1643–1678 (2000)

    Article  Google Scholar 

  • Coombes, S.: Neuronal networks with gap junctions: a study of piece-wise linear planar neuron models. SIAM J. Appl. Dyn. Syst. 7, 1101–1129 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Dayan, P., Abbot, L.F.: Theoretical Neuroscience. MIT Press, New York (1999)

    Google Scholar 

  • Dorfler, F., Bullo, F.: Transient stability analysis in power networks and synchronization of non-uniform Kuramoto oscillators. In: American Control Conference, Baltimore, MD, June, pp. 930–937 (2010)

    Google Scholar 

  • Ermentrout, G.B., Kopell, N.: Multiple pulse interactions and averaging in systems of coupled neural oscillators. J. Math. Biol. 29, 195–217 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, J., Holmes, P.: On the dynamics of electrically-coupled neurons with inhibitory synapses. J. Comput. Neurosci. 22, 39–61 (2007)

    Article  MathSciNet  Google Scholar 

  • Garcia-Rill, E., Heister, D.S., Ye, M., Charlesworth, A., Hayar, A.: Electrical coupling: novel mechanism for sleep–wake control. Sleep 30(11), 1405–1414 (2007)

    Google Scholar 

  • Gelfand, I.M.: Lectures on Lectures on Linear Algebra, 7th edn. Dobrosvet, Moscow (1998) (In Russian)

    Google Scholar 

  • Golubitsky, M., Stewart, I.: Nonlinear dynamics of networks: the groupoid formalism. Bull. Am. Math. Soc. 43, 305–364 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh, A., Boyd, S., Saberi, A.: Minimizing effective resistance of a graph. SIAM Rev. 50(1), 37–66 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Fujisaka, H., Yamada, T.: Prog. Theor. Phys. 69, 32 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Hale, J.K.: Ordinary Differential Equations, 2nd edn. (1980) Krieger

    MATH  Google Scholar 

  • Hale, J.K.: Asymptotic Behavior of Dissipative Systems. Mathematical Surveys and Monographs, vol. 25. AMS, Providence (1988)

    MATH  Google Scholar 

  • Hale, J.K.: Diffusive coupling, dissipation, and synchronization. J. Dyn. Differ. Equ. 9(1), 1–51 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Harville, D.A.: Matrix Algebra from a Statistician’s Prospective. Springer, Berlin (2000). Corrected third printing

    Google Scholar 

  • Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks. Springer, Berlin (1997)

    Book  Google Scholar 

  • Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2007)

    Google Scholar 

  • Josic, K.: Synchronization of chaotic systems and invariant manifolds. Nonlinearity 13, 1321 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Kopell, N., Ermentrout, G.B.: Math. Biosci. 90, 87 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Kuramoto, Y.: In: Araki, H. (ed.) Lecture Notes in Physics, vol. 39, pp. 420–422. Springer, Berlin (1975)

    Google Scholar 

  • Levy, R., Hutchison, W.D., Lozano, A.M., Dostrovsky, J.O.: High-frequency synchronization of neuronal activity in the subthalamic nucleus of Parkinsonian patients with limb tremor. J. Neurosci. 20(20), 7766–7775 (2000)

    Google Scholar 

  • Lewis, T., Rinzel, J.: Dynamics of spiking neurons connected by both inhibitory and electrical coupling. J. Comput. Neurosci. 14, 283–309 (2003)

    Article  Google Scholar 

  • Medvedev, G.S.: Electrical coupling promotes fidelity of responses in the networks of model neurons. Neural Comput. 21(11), 3057–3078 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Medvedev, G.S.: Convergence and stochastic stability of continuous time consensus protocols (2010a). arXiv:1007.1234

  • Medvedev, G.S.: Synchronization of coupled stochastic limit cycle oscillators. Phys. Lett. A 374, 1712–1720 (2010b)

    Article  Google Scholar 

  • Medvedev, G.S., Cisternas, J.: Multimodal regimes in a compartmental model of the dopamine neuron. Physica D 194, 333–356 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Medvedev, G.S., Kopell, N.: Synchronization and transient dynamics in the chains of electrically coupled FitzHugh–Nagumo oscillators. SIAM J. Appl. Math. 61(5), 1762–1801 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Mosekilde, E., Maistrenko, Yu., Postnov, D.: Chaotic Synchronization: Applications to Living Systems. World Scientific, London (2002)

    Book  MATH  Google Scholar 

  • Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  • Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109 (1998)

    Article  Google Scholar 

  • Peles, S., Josic, K.: Synchronization in networks of general weakly non-linear oscillators. J. Phys. A 39, 11801–11817 (2004)

    MathSciNet  Google Scholar 

  • Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  • Ren, W., Beard, R.W., Atkins, E.M.: Information consensus in multivehicle cooperative control. IEEE Control Syst. Mag. 71–82 (2007)

  • Roy, R., Thornburg, K.S. Jr.: Experimental synchronization of chaotic lasers. Phys. Rev. Lett. 72, 2009–2012 (1994)

    Article  Google Scholar 

  • Singer, W.: Synchronization of cortical activity and its putative role in information processing and learning. Annu. Rev. Physiol. 55, 349–374 (1993)

    Article  Google Scholar 

  • Steur, E., Tyukin, I., Nijmeijer, H.: Semi-passivity and synchronization of diffusively coupled neuronal oscillators. Physica D 238, 2119–2128 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Stewart, I., Golubitsky, M., Pivato, M.: Patterns of synchrony in coupled cell networks. SIAM J. Appl. Dyn. Syst. 2 (2003)

  • Storti, D.W., Rand, R.H.: Dynamics of two strongly coupled van der Pol oscillators. SIAM J. Appl. Math. 46, 56–67 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Strogatz, S.: SYNC: The Emerging Science of Spontaneous Order. Hyperion, New York (2003)

    Google Scholar 

  • Sumpter, D., et al.: Consensus decision making by fish. Curr. Biol. 18(22), 1773–1777 (2008)

    Article  Google Scholar 

  • Sun, J., Boyd, S., Xiao, L., Diaconis, P.: The fastest mixing Markov process on a graph and connection to a maximum variance unfolding problem. SIAM Rev. 48(4), 681–699 (2006)

    Google Scholar 

  • Traub, R.D., Whittington, M.A., Buhl, E.H., LeBeau, F.E., Bibbig, A., Boyd, S., Cross, H., Baldeweg, T.: A possible role for gap junctions in generation of very fast EEG Oscillations preceding the onset of and perhaps initiating, seizures. Epilepsia 42, 153–170 (2001)

    Google Scholar 

  • Usher, M., Cohen, J.D., Servan-Schreiber, D., Rajkowski, J., Aston-Jones, G.: The role of the Locus Coeruleus in the regulation of cognitive performance. Science 283, 549–554 (1999)

    Article  Google Scholar 

  • Wiesenfeld, K., Colet, P., Strogatz, S.: Frequency locking in Josephson arrays: connection with the Kuramoto model. Phys. Rev. E 57, 1563–1569 (1998)

    Article  Google Scholar 

  • Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Syst. Control Lett. 53, 65–78 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Young, G.F., Scardovi, L., Leonard, N.E.: Robustness of noisy consensus dynamics with directed communication. In: Proceedings of the American Control Conference, Baltimore, MD (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgi S. Medvedev.

Additional information

Communicated by M. Golubitsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medvedev, G.S. Synchronization of Coupled Limit Cycles. J Nonlinear Sci 21, 441–464 (2011). https://doi.org/10.1007/s00332-010-9088-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-010-9088-4

Keywords

Mathematics Subject Classification (2000)

Navigation