Skip to main content

Advertisement

Log in

Hamilton’s Principle as Variational Inequality for Mechanical Systems with Impact

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The classical form of Hamilton’s principle holds for conservative systems with perfect bilateral constraints. Several attempts have been made in literature to generalise Hamilton’s principle for mechanical systems with perfect unilateral constraints involving impulsive motion. This has led to a number of different variants of Hamilton’s principle, some expressed as variational inequalities. Up to now, the connection between these different principles has been missing. The aim of this paper is to put these different principles of Hamilton in a unified framework by using the concept of weak and strong extrema. The difference between weak and strong variations of the motion is explained in detail. Each type of variation leads to a variant of the principle of Hamilton in the form of a variational inequality. The conclusion of the paper is that each type of variation leads to different necessary and sufficient conditions on the impact law. The principle of Hamilton with strong variations is valid for perfect unilateral constraints with a completely elastic impact law, whereas the weak form of Hamilton’s principle only requires perfect unilateral constraints and no condition on the energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubin, J.-P., Frankowska, H.: Set-valued Analysis. Systems and Control: Foundations and Applications, vol. 2. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  • Bremer, H.: Dynamik und Regelung mechanischer Systeme. Teubner, Stuttgart (1988)

    MATH  Google Scholar 

  • Brogliato, B.: Nonsmooth Mechanics. Models, Dynamics and Control, 2 edn. Communications and Control Engineering. Springer, London (1999)

    MATH  Google Scholar 

  • Cesar, M.O.: Necessary conditions and sufficient conditions of weak minimum for solutions with corner points. Bol. Soc. Brasil. Mat. 15(1–2), 109–135 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Cesari, L.: Optimization—Theory and Applications. Applications of Mathematics, vol. 17. Springer, New York (1983)

    MATH  Google Scholar 

  • Cirak, F., West, M.: Decomposition contact response (DCR) for explicit finite element dynamics. Int. J. Numer. Methods Eng. 64, 1078–1110 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Fetecau, R.C., Marsden, J.E., Ortiz, M., West, M.: Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM J. Appl. Dyn. Syst. 2(3), 381–416 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Glocker, Ch.: Set-Valued Force Laws, Dynamics of Non-Smooth Systems. Lecture Notes in Applied Mechanics, vol. 1. Springer, Berlin (2001)

    MATH  Google Scholar 

  • Goeleven, D., Panagiotopoulos, P.D., Lebau, C., Plotnikova, G.: Inequality forms of d’Alembert’s principle in mechanics of systems with holonomic unilateral constraints. Z. Angew. Math. Mech. 77(7), 483–501 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Goeleven, D., Miettinen, M., Panagiotopoulos, P.D.: Dynamic hemivariational inequalities and their applications. J. Optim. Theory Appl. 103(3), 567–601 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Goeleven, D., Motreanu, D., Dumont, Y., Rochdi, M.: Variational and Hemivariational Inequalities: Theory, Methods and Applications, Volume I: Unilateral Analysis and Unilateral Mechanics. Nonconvex Optimization and its Applications, vol. 69. Kluwer Academic, Dordrecht (2003a)

    MATH  Google Scholar 

  • Goeleven, D., Motreanu, D., Dumont, Y., Rochdi, M.: Variational and Hemivariational Inequalities: Theory, Methods and Applications, Volume II: Unilateral Problems. Nonconvex Optimization and its Applications, vol. 70. Kluwer Academic, Dordrecht (2003b)

    Google Scholar 

  • Hamel, G.: Elementare Mechanik. B.G. Teubner, Stuttgart (1912)

    MATH  Google Scholar 

  • Hartman, P., Stampacchia, G.: On some nonlinear elliptic differential equations. Acta Math. 115(1), 153–188 (1966)

    Article  MathSciNet  Google Scholar 

  • Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and their Applications. Pure and Applied Mathematics. Academic Press, New York (1980)

    MATH  Google Scholar 

  • Kozlov, V.V., Treshchëv, D.V.: Billiards, a Genetic Introduction to the Dynamics of Systems with Impacts. Translations of Mathematical Monographs, vol. 89. American Mathematical Society, Providence (1991)

    MATH  Google Scholar 

  • Kravchuk, A.S., Neittaanmäki, P.J.: Variational and Quasi-variational Inequalities in Mechanics. Solid Mechanics and its Applications, vol. 147. Springer, Dordrecht (2007)

    MATH  Google Scholar 

  • Lanczos, C.: The Variational Principles of Mechanics. University of Toronto Press, Toronto (1962)

    MATH  Google Scholar 

  • Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 18. Springer, Berlin (2004)

    MATH  Google Scholar 

  • Leine, R.I., van de Wouw, N.: Stability and Convergence of Mechanical Systems with Unilateral Constraints. Lecture Notes in Applied and Computational Mechanics, vol. 36. Springer, Berlin (2008)

    MATH  Google Scholar 

  • May, H.O.: Generalized variational principles and nondifferentiable potentials in analytical mechanics. J. Math. Phys. 25(3), 491–493 (1984a)

    Article  MathSciNet  MATH  Google Scholar 

  • May, H.O.: Hamilton’s principle as substationarity principle. Acta Mech. 52(3–4), 177–187 (1984b)

    Article  MathSciNet  MATH  Google Scholar 

  • Moreau, J.J.: La notion de superpotentiel et les liaisons unilatérales en élastostatique. C. R. Acad. Sci., Sér. A 167 (1968), 954–957

    MathSciNet  Google Scholar 

  • Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Non-Smooth Mechanics and Applications. CISM Courses and Lectures, vol. 302, pp. 1–82. Springer, Wien (1988)

    Google Scholar 

  • Panagiotopoulos, P.D.: Non-convex superpotentials in the sense of F.H. Clarke and applications. Mech. Res. Commun. 8(6), 335–340 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Panagiotopoulos, P.D.: Hemivariational Inequalities: Applications in Mechanics and Engineering. Springer, Berlin (1993)

    MATH  Google Scholar 

  • Panagiotopoulos, P.D., Glocker, Ch.: Analytical mechanics: Addendum I. Inequality constraints with elastic impacts. The convex case. Z. Angew. Math. Mech. 78(4), 219–229 (1998)

    Article  MathSciNet  Google Scholar 

  • Panagiotopoulos, P.D., Glocker, Ch.: Inequality constraints with elastic impacts in deformable bodies. The convex case. Arch. Appl. Mech. 70, 349–365 (2000)

    Article  MATH  Google Scholar 

  • Papastavridis, J.G.: Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems: For Engineers, Physicists and Mathematicians. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  • Percivale, D.: Uniqueness in the elastic bounce problem I. J. Differ. Equ. 56, 206–215 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Percivale, D.: Uniqueness in the elastic bounce problem II. J. Differ. Equ. 90, 304–315 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Rockafellar, R.T., Wets, R.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  • Salomon, R.: Practical use of Hamilton’s principle. J. Fluid Mech. 132, 431–444 (1983)

    Article  Google Scholar 

  • Tornambè, A.: Modeling and control of impact in mechanical systems: Theory and experimental results. IEEE Trans. Autom. Control 44(2), 294–309 (1999)

    Article  MATH  Google Scholar 

  • Troutman, J.L.: Variational Calculus and Optimal Control: Optimization with Elementary Convexity. Springer, New York (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Leine.

Additional information

Communicated by G. Stepan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leine, R.I., Aeberhard, U. & Glocker, C. Hamilton’s Principle as Variational Inequality for Mechanical Systems with Impact. J Nonlinear Sci 19, 633 (2009). https://doi.org/10.1007/s00332-009-9048-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-009-9048-z

Keywords

Mathematics Subject Classification (2000)

Navigation