Advertisement

Journal of Nonlinear Science

, Volume 19, Issue 5, pp 467–496 | Cite as

Turing Instabilities at Hopf Bifurcation

  • M. R. Ricard
  • S. Mischler
Article

Abstract

Turing–Hopf instabilities for reaction-diffusion systems provide spatially inhomogeneous time-periodic patterns of chemical concentrations. In this paper we suggest a way for deriving asymptotic expansions to the limit cycle solutions due to a Hopf bifurcation in two-dimensional reaction systems and we use them to build convenient normal modes for the analysis of Turing instabilities of the limit cycle. They extend the Fourier modes for the steady state in the classical Turing approach, as they include time-periodic fluctuations induced by the limit cycle. Diffusive instabilities can be properly considered because of the non-catastrophic loss of stability that the steady state shows while the limit cycle appears. Moreover, we shall see that instabilities may appear even though the diffusion coefficients are equal. The obtained normal modes suggest that there are two possible ways, one weak and the other strong, in which the limit cycle generates oscillatory Turing instabilities near a Turing–Hopf bifurcation point. In the first case slight oscillations superpose over a dominant steady inhomogeneous pattern. In the second, the unstable modes show an intermittent switching between complementary spatial patterns, producing the effect known as twinkling patterns.

Keywords

Hopf bifurcation Turing instabilities Reaction-diffusion Averaging 

Mathematics Subject Classification (2000)

35K57 37G15 34C29 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baurmann, M., Gross, T., Feudel, U.: Instabilities in spatially extended predator–prey systems: Spatiotemporal patterns in the neighborhood of Turing–Hopf bifurcations. J. Theor. Biol. 245(2), 220–229 (2007) CrossRefMathSciNetGoogle Scholar
  2. Bogoliubov, N.N., Mitropolski, Y.A.: Asymptotic Methods in the Theory of Nonlinear Oscillations. Gordon and Breach, New York (1961) Google Scholar
  3. Edelstein-Keshet, L.: Mathematical Models in Biology. Birkhauser, New York (1988) zbMATHGoogle Scholar
  4. Golubitsky, M., Knobloch, E., Stewart, I.: Target patterns and spirals in planar reaction-diffusion systems. J. Nonlinear Sci. 10, 333–354 (2000) CrossRefMathSciNetzbMATHGoogle Scholar
  5. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, New York (1981) zbMATHGoogle Scholar
  6. Hofbauer, J., So, J.W.-H.: Multiple limit cycles for three dimensional Lotka–Volterra equations. Appl. Math. Lett. 7(6), 65–70 (1994) CrossRefMathSciNetzbMATHGoogle Scholar
  7. Just, W., Bose, M., Bose, S., Engel, H., Schöll, E.: Spatiotemporal dynamics near a supercritical Turing–Hopf bifurcation in a two-dimensional reaction-diffusion system. Phys. Rev. E 64(026219), 1–12 (2001) Google Scholar
  8. Kuznetsov, Yu.A.: Elements of Applied Bifurcation Theory, 2nd edn. Applied Mathematical Sciences, vol. 112. Springer, New York (1998) zbMATHGoogle Scholar
  9. Leiva, H.: Stability of a periodic solution for a system of parabolic equations. Appl. Anal. 60, 277–300 (1996) CrossRefMathSciNetzbMATHGoogle Scholar
  10. Maini, P.K., Painter, K.J., Chau, H.N.P.: Spatial pattern formation in chemical and biological systems. J. Chem. Soc. Faraday Trans. 93(20), 3601–3610 (1997) CrossRefGoogle Scholar
  11. Marques, F., Gelfgat, A.Yu., Lopez, J.M.: Tangent double Hopf bifurcation in a differentially rotating cylinder FBW. Phys. Rev. Lett. E 68(016310), 1–13 (2003) MathSciNetGoogle Scholar
  12. Marsden, J.E., McCracken, M.: The Hopf Bifurcation and Its Applications. Springer, New York (1976) zbMATHGoogle Scholar
  13. Meixner, M., De Wit, A., Bose, S., Schöll, E.: Generic spatiotemporal dynamics near codimension-two Turing–Hopf bifurcations. Phys. Rev. E 55(6), 6690–6697 (1997) CrossRefMathSciNetGoogle Scholar
  14. Murray, J.D.: Mathematical Biology, 3rd edn. Interdisciplinary Applied Mathematics, vol. 17. Springer, New York (2001) Google Scholar
  15. Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical applications, 3rd edn. Interdisciplinary Applied Mathematics, vol. 18. Springer, New York (2003) zbMATHGoogle Scholar
  16. Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976) zbMATHGoogle Scholar
  17. Sanders, J.A., Verhulst, F.: Averaging Methods in Nonlinear Dynamical Systems. Applied Mathematical Sciences, vol. 59. Springer, New York (1985) zbMATHGoogle Scholar
  18. Sandstede, B., Scheel, A.: Essential instabilities of fronts: bifurcation and bifurcation failure. Dyn. Syst. 16(1), 1–28 (2001) CrossRefMathSciNetzbMATHGoogle Scholar
  19. Schnakenberg, J.: Simple chemical reactions with limit cycle behaviour. J. Theor. Biol. 81, 389–400 (1979) CrossRefMathSciNetGoogle Scholar
  20. Schuman, B., Tóth, J.: No limit cycle in two species second order kinetics. Bull. Sci. Math. 127(3), 222–230 (2003) CrossRefMathSciNetzbMATHGoogle Scholar
  21. Turing, A.M.: The chemical basis for morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952) CrossRefGoogle Scholar
  22. van der Ploeg, H., Doelman, A.: Stability of spatially periodic pulse patterns in a class of singularly perturbed reaction-diffusion equations. Indiana Univ. Math. J. 54(5), 1219–1301 (2005) CrossRefMathSciNetzbMATHGoogle Scholar
  23. Vastano, J.A., Pearson, J.E., Horsthemke, W., Swinney, H.L.: Chemical pattern formation with equal diffusion coefficients. Phys. Lett. A 124(6–7), 320–324 (1987) CrossRefGoogle Scholar
  24. Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems. Springer, Berlin (1990) zbMATHGoogle Scholar
  25. Ward, M.J.: Asymptotic methods for reaction-diffusion systems: past and present. Bull. Math. Biol. 68(5), 1151–1167 (2006) CrossRefGoogle Scholar
  26. Ward, M.J., Wei, J.: Hopf bifurcations and oscillatory instabilities of spike solutions for the one-dimensional Gierer–Meinhardt model. J. Nonlinear Sci. 13(2), 209–264 (2003) CrossRefMathSciNetzbMATHGoogle Scholar
  27. Wei, J., Winter, M.: Asymmetric spotty patterns for the Gray–Scott model in ℝ2. Stud. Appl. Math. 110(1), 63–102 (2003) CrossRefMathSciNetzbMATHGoogle Scholar
  28. Wilhelm, T., Heinrich, R.: Mathematical analysis of the smallest chemical reaction system with Hopf bifurcation. J. Math. Chem. 19(2), 1–14 (1996) CrossRefMathSciNetzbMATHGoogle Scholar
  29. Yang, L., Epstein, I.R.: Oscillatory Turing patterns in reaction-diffusion systems with two coupled layers. Phys. Rev. Lett. 90(17), 1–4 (2003) (178303) CrossRefGoogle Scholar
  30. Yang, L., Berenstein, I., Epstein, I.R.: Segmented waves from a spatiotemporal transverse wave instability. Phys. Rev. Lett. 95(3), 1–4 (2005) (038303) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidad de La HabanaHabanaCuba
  2. 2.CEREMADE, CNRS UMR 7534Université Paris IX-DauphineParis cedex 16France

Personalised recommendations