Skip to main content
Log in

Pattern-forming systems for control of large arrays of actuators

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

We consider an approach for coordinating the activity of a large array of microactuators via diffusive (i.e., nearest-neighbor) coupling combined with reactive growth and decay, implemented via interconnection templates which have been artificially engineered into the system (for example, in collocated microelectronic circuitry, or through the formulation of active material layers). Such coupled systems can support interesting spatiotemporal patterns, which in turn determine the actuation patterns. Generating such spatiotemporal patterns typically involves stressing the interconnections by raising or lowering a parameter resulting in the crossing of stability thresholds. The possibility of making such parametric adjustments via feedback on a slower timescale offers a solution to the problem of communicating effectively within a large array: The communication is achieved through the interconnection template. The mathematics behind this idea leads us into the rich domain of nonlinear partial differential equations (PDEs) with spatiotemporal pattern solutions. We present a global nonlinear stability analysis that applies to certain model pattern-forming systems. The nonlinear stability analysis could serve as a starting point for control system design for systems containing large microactuator arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. F. Bohringer and B. R. Donald, “Algorithmic MEMS,” Robotics, the Algorithmic Perspective; The Third Workshop on the Algorithmic Foundations of Robotics, P. K. Agarwal, L. E. Kavraki, and M. T. Mason, eds., pp. 1–20, A. K. Peters Publ., Natick, MA, 1998.

    Google Scholar 

  2. E. W. Justh and P. S. Krishnaprasad, “Analysis of a complex activator-inhibitor equation,” Proceedings of the American Control Conference, pp. 1613–1617, 1999 (also ISR TR 99-13).

  3. K. P. Selverov and H.A. Stone, “Peristaltically Driven Flows for Micro-Mixers,” Proceedings of the MEMS ’98, L. Lin, F. K. Foster, N. R. Aluru, and X. Zhang, eds., DSC-Vol. 66, ASME, New York, 1998.

    Google Scholar 

  4. K. P. Selverov and H. A. Stone, “Peristaltically driven flows with applications towards micromixing,” Physics of Fluids, Vol. 13, No. 7, pp. 1837–1859, 2001.

    Article  Google Scholar 

  5. J. Lumley and P. Blossey, “Control of Turbulence,” Annual Review of Fluid Mechanics, Vol. 30, pp. 311–327, 1998.

    Article  MathSciNet  Google Scholar 

  6. T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, “Microelectromechanical Deformable Mirrors,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 5, No. 1, pp. 83–89, 1999.

    Article  Google Scholar 

  7. M. A. Vorontsov and W. B. Miller. Self-organization in Optical Systems and Applications in Information Technology, 2nd ed., Springer-Verlag, New York, 1998.

    Chapter  Google Scholar 

  8. M. C. Cross and P. C. Hohenberg, “Pattern formation outside of equilibrium,” Reviews of Modern Physics, Vol. 65, No. 3, pp. 851–1112, 1993.

    Article  Google Scholar 

  9. G. B. Ermentrout and J. D. Cowan, “A mathematical theory of visual hallucination patterns,” Biological Cybernetics, Vol. 34, No. 3, pp. 137–150, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. D. Murray, Mathematical Biology, 2nd ed., Springer-Verlag, New York, 1993.

    Chapter  Google Scholar 

  11. A. T. Winfree, The Geometry of Biological Time, 2nd ed., Springer-Verlag, New York, 2000.

    Google Scholar 

  12. G. Li, Q. Ouyang, V. Petrov, and H. L. Swinney, “Transition from Simple Rotating Chemical Spirals to Meandering and Traveling Spirals,” Physical Review Letters, Vol. 77, No. 10, pp. 2105–2108, 1996.

    Article  Google Scholar 

  13. M. Sheintuch and S. Shvartsman, “Spatiotemporal patterns in Catalytic Reactor: Journal Review,” American Institute of Chemical Engineers Journal, Vol. 42, No. 4, pp. 1041–1068, 1996.

    Article  Google Scholar 

  14. M. Bar, I. G. Kevrekidis, H. H. Rotermund, and G. Ertl, “Pattern formation in composite excitable media,” Physical Review E, Vol. 52, No. 6, pp. R5739-R5742, 1995.

    Article  Google Scholar 

  15. P. B. Umbanhowar, F. Melo, and H. L. Swinney, “Localized excitations in a vertically vibrated granular layer,” Nature, Vol. 382, pp. 793–796, 1996.

    Article  Google Scholar 

  16. M. Bode and H.-G. Purwins, “Pattern formation in reaction-diffusion systems: Dissipative solitons in physical systems,” Physica D, Vol. 86, pp. 53–63, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. S. Kerner and V. V. Osipov, “Autosolitons,” Soviet Physics Uspekhi, Vol. 32, No. 2, pp. 101–138, 1989.

    Article  Google Scholar 

  18. B. S. Kerner and V. V. Osipov, Autosolitons, Kluwer Academic Publishers, Boston, 1994.

    Google Scholar 

  19. M. Barahona, E. Trias, T. P. Orlando, A. E. Duwel, H. S. J. van der Zant, S. Watanabe, and S. H. Strogatz, “Resonances of dynamical checkerboard states in Josephson arrays with self-inductance,” Physical Review B, Vol. 55, No. 18, pp. 11, 989–11, 992, 1997.

    Article  Google Scholar 

  20. K. Y. Tsang, R. E. Mirollo, S. H. Strogatz, and K. Wiesenfeld, “Dynamics of a Globally Coupled Oscillator Array,” Physica D, Vol. 48, pp. 102–112, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. P. Schenk, P. Schutz, M. Bode, and H.-G. Purwins, “Interaction of self-organized quasiparticles in a two-dimensional reaction-diffusion system: The formation of molecules,” Physical Review E, Vol. 57, No. 6, pp. 6480–6486, 1998.

    Article  Google Scholar 

  22. H.-G. Purwins and Ch. Radehaus, “Pattern Formation on Analogue Parallel Networks,” Neural and Synergetic Computers, Hermann Haken, ed., pp. 137–154, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  23. S. C. Zhu and D. Mumford, “Prior Learning and Gibbs Reaction-Diffusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19,No. 11, pp. 1236–1250, 1997.

    Article  Google Scholar 

  24. E. W. Justh, Control of Large Actuator Arrays Using Pattern-Forming Systems, Ph.D. dissertation, University of Maryland, ISR Ph.D. Thesis Report 98-6, 1998 (see http://www.isr.umd.edu/TechReports/ISR/1998).

  25. E. W. Justh and P. S. Krishnaprasad, “A Lyapunov functional for the cubic nonlinearity activator-inhibitor model equation,” Proceedings of the IEEE Conference on Decision and Control, pp. 1404–1409, IEEE, New York, 1998 (also ISR TR 98-36).

    Google Scholar 

  26. J. L. Lions, “On the controllability of distributed systems,” Proceedings of the National Academy of Sciences, USA, Vol. 94, pp. 4828–4835, 1997.

    Article  MATH  Google Scholar 

  27. E. W. Justh, P. S. Krishnaprasad, and M. A. Vorontsov, “Nonlinear Analysis of a HighResolution Optical Wavefront Control System,” Proceedings of the 39th IEEE Conference on Decision and Control, pp. 3301–3306, IEEE, New York, 2000.

    Google Scholar 

  28. E. W. Justh, M. A. Vorontsov, G. W. Carhart, L. A. Beresnev, and P. S. Krishnaprasad, “Adaptive Optics with Advanced Phase-Contrast Techniques: Part II. High-Resolution Wavefront Control,” Journal of the Optical Society of America A, Vol. 18, No. 6, pp. 1300–1311, 2001.

    Article  Google Scholar 

  29. L. C. Evans. Partial Differential Equations. American Mathematical Society, Providence, RI, 1998.

    MATH  Google Scholar 

  30. R. Temam. Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed. Springer-Verlag, New York, 1997.

    MATH  Google Scholar 

  31. R. K. Brayton and J. K. Moser, “A Theory of Nonlinear Networks—I,” Quarterly of Applied Mathematics, Vol. XXII, No. 1, pp. 1–33, 1964.

    MathSciNet  Google Scholar 

  32. P. B. Gilkey. The Index Theorem and the Heat Equation. Mathematics Lecture Series 4, Publish or Perish, Inc., Boston, 1974.

    Google Scholar 

  33. H. Khalil. Nonlinear Systems. Macmillan Publishing Co., New York, 1992.

    MATH  Google Scholar 

  34. R. Mahony, “Convergence of Gradient Flows and Gradient Descent Algorithms for Analytic Cost Functions,” Proceedings of the International Symposium MTNS-98, 1998.

  35. R. E. Mahony and B. Andrews, “Convergence of the Iterates of Descent Methods for Analytic Cost Function,” Preprint, 1999.

  36. S. P. Bhat and D. S. Bernstein, “Lyapunov Analysis of Semistability,” Proceedings of the American Control Conference, pp. 1608–1612, 1999.

  37. S. Lojasiewicz, “Ensembles semi-analytiques,” Technical Report, Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette (Sein-et-Oise), France, 1965.

    Google Scholar 

  38. L. Cauler and A. Penz, “Neurointeractivism: Emergence by Real-Time Environmental Dynamics,” Neuromorphic VLSI PI Meeting, Naval Research Laboratory, Washington, DC, June 23–24, 1998.

    Google Scholar 

  39. J. F. R. Archilla, R. S. MacKay, and J. L. Marin, “Discrete breathers and Anderson modes: Two faces of the same phenomenon?” Physica D, Vol. 134, pp. 406–418, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  40. M. W. Hirsch, “Convergent Activation Dynamics in Continuous Time Networks,” Neural Networks, Vol. 2, pp. 331–349, 1989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. W. Justh.

Additional information

Communicated by S. Wiggins

Rights and permissions

Reprints and permissions

About this article

Cite this article

Justh, E.W., Krishnaprasad, P.S. Pattern-forming systems for control of large arrays of actuators. J. Nonlinear Sci. 11, 239–277 (2001). https://doi.org/10.1007/s00332-001-0392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-001-0392-x

Key words

Navigation