Skip to main content
Log in

Radiological pulmonary sequelae after COVID-19 and correlation with clinical and functional pulmonary evaluation: results of a prospective cohort

  • Chest
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Whether COVID-19 leads to long-term pulmonary sequelae or not remains unknown. The aim of this study was to assess the prevalence of persisting radiological pulmonary fibrotic lesions in patients hospitalized for COVID-19.

Materials and methods

We conducted a prospective single-center study among patients hospitalized for COVID-19 between March and May 2020. Patients with residual symptoms or admitted into intensive care units were investigated 4 months after discharge by a chest CT (CCT) and pulmonary function tests (PFTs). The primary endpoint was the rate of persistent radiological fibrotic lesions after 4 months. Secondary endpoints included further CCT evaluation at 9 and 16 months, correlation of fibrotic lesions with clinical and PFT evaluation, and assessment of predictive factors.

Results

Among the 1151 patients hospitalized for COVID-19, 169 patients performed a CCT at 4 months. CCTs showed pulmonary fibrotic lesions in 19% of the patients (32/169). These lesions were persistent at 9 months and 16 months in 97% (29/30) and 95% of patients (18/19) respectively. There was no significant clinical difference based on dyspnea scale in patients with pulmonary fibrosis. However, PFT evaluation showed significantly decreased diffusing lung capacity for carbon monoxide (p < 0.001) and total lung capacity (p < 0.001) in patients with radiological lesions. In multivariate analysis, the predictive factors of radiological pulmonary fibrotic lesions were pulmonary embolism (OR = 9.0), high-flow oxygen (OR = 6.37), and mechanical ventilation (OR = 3.49).

Conclusion

At 4 months, 19% of patients investigated after hospitalization for COVID-19 had radiological pulmonary fibrotic lesions; they persisted up to 16 months.

Clinical relevance statement

Whether COVID-19 leads to long-term pulmonary sequelae or not remains unknown. The aim of this study was to assess the prevalence of persisting radiological pulmonary fibrotic lesions in patients hospitalized for COVID-19. The prevalence of persisting lesions after COVID-19 remains unclear. We assessed this prevalence and predictive factors leading to fibrotic lesions in a large cohort. The respiratory clinical impact of these lesions was also assessed.

Key Points

• Nineteen percent of patients hospitalized for COVID-19 had radiological fibrotic lesions at 4 months, remaining stable at 16 months.

• COVID-19 fibrotic lesions did not match any infiltrative lung disease pattern.

• COVID-19 fibrotic lesions were associated with pulmonary function test abnormalities but did not lead to clinical respiratory manifestation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ARDS:

Acute respiratory distress syndrome

CCT:

Chest computed tomography

CI:

95% Confidence interval

COMEBAC:

Consultation multi-expertise de Bicêtre après COVID

COVID-19:

Coronavirus disease 2019

CRP:

C-reactive protein

DLCO:

Lung diffusion capacity for carbon monoxide

FEV1:

Forced expiratory volume at the first second

GGO:

Ground-glass opacity

ICU:

Intensive care unit

IQR:

Interquartile range

LDH:

Lactate dehydrogenase

MERS-CoV:

Middle East respiratory syndrome–related coronavirus

mMRC:

Modified Medical Research Council Scale

OR:

Odds ratio

PFT:

Pulmonary function test

RT-PCR:

Reverse transcriptase-polymerase chain reaction

SARS-CoV:

Severe acute respiratory syndrome coronavirus

TLC:

Total lung capacity

VC:

Vital capacity

References

  1. WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int. Accessed 22 Apr 2022

  2. Ai T, Yang Z, Hou H et al (2020) Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology 296:E32–E40. https://doi.org/10.1148/radiol.2020200642

    Article  CAS  PubMed  Google Scholar 

  3. Ng M-Y, Lee EYP, Yang J et al (2020) Imaging profile of the COVID-19 infection: radiologic findings and literature review. Radiol Cardiothorac Imaging 2:e200034. https://doi.org/10.1148/ryct.2020200034

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang P, Li J, Liu H et al (2020) Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: a 15-year follow-up from a prospective cohort study. Bone Res 8:8. https://doi.org/10.1038/s41413-020-0084-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Antonio GE, Wong KT, Hui DSC et al (2003) Thin-section CT in patients with severe acute respiratory syndrome following hospital discharge: preliminary experience. Radiology 228:810–815. https://doi.org/10.1148/radiol.2283030726

    Article  PubMed  Google Scholar 

  6. Das KM, Lee EY, Singh R et al (2017) Follow-up chest radiographic findings in patients with MERS-CoV after recovery. Indian J Radiol Imaging 27:342–349. https://doi.org/10.4103/ijri.IJRI_469_16

    Article  PubMed  PubMed Central  Google Scholar 

  7. Meo SA, Alhowikan AM, Al-Khlaiwi T et al (2020) Novel coronavirus 2019-nCoV: prevalence, biological and clinical characteristics comparison with SARS-CoV and MERS-CoV. Eur Rev Med Pharmacol Sci 24:2012–2019. https://doi.org/10.26355/eurrev_202002_20379

    Article  CAS  PubMed  Google Scholar 

  8. Spagnolo P, Balestro E, Aliberti S et al (2020) Pulmonary fibrosis secondary to COVID-19: a call to arms? Lancet Respir Med 8:750–752. https://doi.org/10.1016/S2213-2600(20)30222-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li Y, Wu J, Wang S et al (2021) Progression to fibrosing diffuse alveolar damage in a series of 30 minimally invasive autopsies with COVID-19 pneumonia in Wuhan, China. Histopathology 78:542–555. https://doi.org/10.1111/his.14249

    Article  PubMed  Google Scholar 

  10. Luger AK, Sonnweber T, Gruber L et al (2022) Chest CT of lung injury 1 year after COVID-19 pneumonia: the CovILD Study. Radiology 304(2):462–470. https://doi.org/10.1148/radiol.211670

    Article  PubMed  Google Scholar 

  11. Wu X, Liu X, Zhou Y et al (2021) 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: a prospective study. Lancet Respir Med 9:747–754. https://doi.org/10.1016/S2213-2600(21)00174-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pan F, Yang L, Liang B et al (2022) Chest CT patterns from diagnosis to 1 year of follow-up in patients with COVID-19. Radiology 302:709–719. https://doi.org/10.1148/radiol.2021211199

    Article  PubMed  Google Scholar 

  13. Han X, Chen L, Fan Y et al (2023) Longitudinal assessment of chest CT findings and pulmonary function in patients after COVID-19. Radiology 307(2):e222888. https://doi.org/10.1148/radiol.222888

    Article  PubMed  Google Scholar 

  14. Han X, Fan Y, Alwalid O et al (2021) Six-month follow-up chest CT findings after severe COVID-19 pneumonia. Radiology 299:E177–E186. https://doi.org/10.1148/radiol.2021203153

    Article  PubMed  Google Scholar 

  15. Vijayakumar B, Tonkin J, Devaraj A et al (2021) CT lung abnormalities after COVID-19 at 3 months and 1 year after hospital discharge. Radiology 303(2):444–454. https://doi.org/10.1148/radiol.2021211746

    Article  PubMed  Google Scholar 

  16. The Writing Committee for the COMEBAC Study Group (2021) Four-month clinical status of a cohort of patients after hospitalization for COVID-19. JAMA 325:1525–1534. https://doi.org/10.1001/jama.2021.3331

    Article  CAS  PubMed Central  Google Scholar 

  17. Holland AE, Spruit MA, Troosters T et al (2014) An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J 44:1428–1446. https://doi.org/10.1183/09031936.00150314

    Article  PubMed  Google Scholar 

  18. Graham BL, Steenbruggen I, Miller MR et al (2019) Standardization of Spirometry 2019 Update. An official American Thoracic Society and European Respiratory Society technical statement. Am J Respir Crit Care Med 200:e70–e88. https://doi.org/10.1164/rccm.201908-1590ST

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wanger J, Clausen JL, Coates A et al (2005) Standardisation of the measurement of lung volumes. Eur Respir J 26:511–522. https://doi.org/10.1183/09031936.05.00035005

    Article  CAS  PubMed  Google Scholar 

  20. Graham BL, Brusasco V, Burgos F et al (2017) 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur Respir J 49:1600016. https://doi.org/10.1183/13993003.00016-2016

    Article  PubMed  Google Scholar 

  21. Quanjer PH, Stanojevic S, Cole TJ et al (2012) Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J 40:1324–1343. https://doi.org/10.1183/09031936.00080312

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cotes JE, Chinn DJ, Quanjer PH et al (1993) Standardization of the measurement of transfer factor (diffusing capacity). Eur Respir J 6:41–52. https://doi.org/10.1183/09041950.041s1693

    Article  PubMed  Google Scholar 

  23. Hunninghake GM, Quesada-Arias LD, Carmichael NE et al (2020) Interstitial lung disease in relatives of patients with pulmonary fibrosis. Am J Respir Crit Care Med 201:1240–1248. https://doi.org/10.1164/rccm.201908-1571OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Montani D, Girerd B, Jaïs X et al (2021) Screening for pulmonary arterial hypertension in adults carrying a BMPR2 mutation. Eur Respir J 58:2004229. https://doi.org/10.1183/13993003.04229-2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hansell DM, Bankier AA, MacMahon H et al (2008) Fleischner Society: glossary of terms for thoracic imaging. Radiology 246:697–722. https://doi.org/10.1148/radiol.2462070712

    Article  PubMed  Google Scholar 

  26. Franquet T (2011) Imaging of pulmonary viral pneumonia. Radiology 260:18–39. https://doi.org/10.1148/radiol.11092149

    Article  PubMed  Google Scholar 

  27. Koo HJ, Lim S, Choe J et al (2018) Radiographic and CT features of viral pneumonia. Radiographics 38:719–739. https://doi.org/10.1148/rg.2018170048

    Article  PubMed  Google Scholar 

  28. Kligerman SJ, Franks TJ, Galvin JR (2013) From the radiologic pathology archives: organization and fibrosis as a response to lung injury in diffuse alveolar damage, organizing pneumonia, and acute fibrinous and organizing pneumonia. Radiographics 33:1951–1975. https://doi.org/10.1148/rg.337130057

    Article  PubMed  Google Scholar 

  29. Pan F, Ye T, Sun P et al (2020) Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19). Radiology 295:715–721. https://doi.org/10.1148/radiol.2020200370

    Article  PubMed  Google Scholar 

  30. Lassau N, Ammari S, Chouzenoux E et al (2021) Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients. Nat Commun 12:634. https://doi.org/10.1038/s41467-020-20657-4

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Dhamija E Cryptogenic organizing pneumonia | Radiology Reference Article | Radiopaedia.org. In: Radiopaedia. https://doi.org/10.53347/rID-7109. Accessed 1 Aug 2023

  32. Baque-Juston M, Pellegrin A, Leroy S et al (2014) Organizing pneumonia: what is it? A conceptual approach and pictorial review. Diagn Interv Imaging 95:771–777. https://doi.org/10.1016/j.diii.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  33. Covid : une mortalité hospitalière de 19 % lors de la première vague. https://www.larevuedupraticien.fr/article/covid-une-mortalite-hospitaliere-de-19-lors-de-la-premiere-vague. Accessed 5 Feb 2022

  34. Mortality Analyses. In: Johns Hopkins Coronavirus Resource Center. https://coronavirus.jhu.edu/data/mortality. Accessed 8 May 2022

  35. Jutant E-M, Meyrignac O, Beurnier A et al (2022) Respiratory symptoms and radiological findings in post-acute COVID-19 syndrome. ERJ Open Res 8:00479–02021. https://doi.org/10.1183/23120541.00479-2021

    Article  PubMed  PubMed Central  Google Scholar 

  36. Baque-Juston M, Guesmi M, Foglino P et al (2022) Pneumonie à Sars-CoV-2: broncho-pneumonie ou vasculopathie ? Focus sur le signe scanographique du « vaisseau élargi » et corrélations radio-histologiques. J d’imagerie diagnostique et interventionnelle 5:18–27. https://doi.org/10.1016/j.jidi.2021.06.001

    Article  Google Scholar 

  37. McGonagle D, Bridgewood C, Ramanan AV et al (2021) COVID-19 vasculitis and novel vasculitis mimics. Lancet Rheumatol 3:e224–e233. https://doi.org/10.1016/S2665-9913(20)30420-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mondal R, Lahiri D, Deb S et al (2020) COVID-19: Are we dealing with a multisystem vasculopathy in disguise of a viral infection? J Thromb Thrombolysis 50:567–579. https://doi.org/10.1007/s11239-020-02210-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cabrera-Benitez NE, Laffey JG, Parotto M et al (2014) Mechanical ventilation–associated lung fibrosis in acute respiratory distress syndrome a significant contributor to poor outcome. Anesthesiology 121:189–198. https://doi.org/10.1097/ALN.0000000000000264

    Article  PubMed  Google Scholar 

  40. Hata A, Schiebler ML, Lynch DA, Hatabu H (2021) Interstitial lung abnormalities: state of the art. Radiology 301:19–34. https://doi.org/10.1148/radiol.2021204367

    Article  PubMed  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Samer Soliman.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Olivier Meyrignac (Université Paris-Saclay, AP-HP, Service de Radiologie Diagnostique et Interventionnelle, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France).

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

Heithem Soliman kindly provided statistical advice for this manuscript.

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all patients in this study.

Ethical approval

Institutional Review Board approval was obtained. The ethics committee of the French Intensive Care Society validated the study (CE20-56).

Study subjects or cohorts overlap

Some study subjects or cohorts have been previously reported in two studies:

COMEBAC study Group’s study published in JAMA (https://doi.org/10.1001/jama.2021.3331).

E-M Jutant’s study published in ERJ Open Res (https://doi.org/10.1183/23120541.00479-2021).

Methodology

• prospective

• diagnostic or prognostic study

• performed at one institution

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 408 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliman, S., Soliman, H., Crézé, M. et al. Radiological pulmonary sequelae after COVID-19 and correlation with clinical and functional pulmonary evaluation: results of a prospective cohort. Eur Radiol 34, 1037–1052 (2024). https://doi.org/10.1007/s00330-023-10044-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-023-10044-0

Keywords

Navigation