Abstract
Objectives
We aimed to evaluate the effect of hepatic steatosis (HS) on liver volume and to develop a formula to estimate lean liver volume correcting the HS effect.
Methods
This retrospective study included healthy adult liver donors who underwent gadoxetic acid–enhanced MRI and proton density fat fraction (PDFF) measurement from 2015 to 2019. The degree of HS was graded at 5% PDFF intervals from grade 0 (no HS; PDFF < 5.5%). Liver volume was measured with hepatobiliary phase MRI using deep learning algorithm, and standard liver volume (SLV) was calculated as the reference lean liver volume. The association between liver volume and SLV ratio with PDFF grades was evaluated using Spearman’s correlation (ρ). The effect of PDFF grades on liver volume was evaluated using the multivariable linear regression model.
Results
The study population included 1038 donors (mean age, 31 ± 9 years; 689 men). Mean liver volume to SLV ratio increased according to PDFF grades (ρ = 0.234, p < 0.001). The multivariable analysis indicated that SLV (β = 1.004, p < 0.001) and PDFF grade*SLV (β = 0.044, p < 0.001) independently affected liver volume, suggesting a 4.4% increase in liver volume per one-point increment in the PDFF grade. PDFF-adjusted lean liver volume was estimated using the formula, liver volume/[1.004 + 0.044 × PDFF grade]. The mean estimated lean liver volume to SLV ratio approximated to one for all PDFF grades, with no significant association with PDFF grades (p = 0.851).
Conclusion
HS increases liver volume. The formula to estimate lean liver volume may be useful to adjust for the effect of HS on liver volume.
Key Points
• Hepatic steatosis increases liver volume.
• The presented formula to estimate lean liver volume using MRI-measured proton density fat fraction and liver volume may be useful to adjust for the effect of hepatic steatosis on measured liver volume.
This is a preview of subscription content, access via your institution.




Abbreviations
- HBP:
-
Hepatobiliary phase
- HS:
-
Hepatic steatosis
- LDLT:
-
Living donor liver transplantation
- PDFF:
-
Proton density fat fraction
- SLV:
-
Standard liver volume
References
Schindl MJ, Redhead DN, Fearon KC et al (2005) The value of residual liver volume as a predictor of hepatic dysfunction and infection after major liver resection. Gut 54:289–296. https://doi.org/10.1136/gut.2004.046524
Prodeau M, Drumez E, Duhamel A et al (2019) An ordinal model to predict the risk of symptomatic liver failure in patients with cirrhosis undergoing hepatectomy. J Hepatol 71:920–929. https://doi.org/10.1016/j.jhep.2019.06.003
Kiuchi T, Kasahara M, Uryuhara K et al (1999) Impact of graft size mismatching on graft prognosis in liver transplantation from living donors. Transplantation 67:321–327. https://doi.org/10.1097/00007890-199901270-00024
Ahn Y, Yoon JS, Lee SS et al (2020) Deep learning algorithm for automated segmentation and volume measurement of the liver and spleen using portal venous phase computed tomography images. Korean J Radiol 21:987–997. https://doi.org/10.3348/kjr.2020.0237
Park HJ, Yoon JS, Lee SS et al (2022) Deep learning-based assessment of functional liver capacity using gadoxetic acid-enhanced hepatobiliary phase MRI. Korean J Radiol 23:720–731. https://doi.org/10.3348/kjr.2021.0892
Wong VW, Wong GL, Yeung DK et al (2015) Incidence of non-alcoholic fatty liver disease in Hong Kong: a population study with paired proton-magnetic resonance spectroscopy. J Hepatol 62:182–189. https://doi.org/10.1016/j.jhep.2014.08.041
Younossi ZM, Blissett D, Blissett R et al (2016) The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology 64:1577–1586. https://doi.org/10.1002/hep.28785
Raptis DA, Fischer MA, Graf R et al (2012) MRI: the new reference standard in quantifying hepatic steatosis? Gut 61:117–127. https://doi.org/10.1136/gutjnl-2011-300155
Bannas P, Kramer H, Hernando D et al (2015) Quantitative magnetic resonance imaging of hepatic steatosis: validation in ex vivo human livers. Hepatology 62:1444–1455. https://doi.org/10.1002/hep.28012
Yki-Jarvinen H (2014) Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2:901–910. https://doi.org/10.1016/S2213-8587(14)70032-4
Behrns KE, Tsiotos GG, DeSouza NF, Krishna MK, Ludwig J, Nagorney DM (1998) Hepatic steatosis as a potential risk factor for major hepatic resection. J Gastrointest Surg 2:292–298. https://doi.org/10.1016/s1091-255x(98)80025-5
Vetelainen R, van Vliet A, Gouma DJ, van Gulik TM (2007) Steatosis as a risk factor in liver surgery. Ann Surg 245:20–30. https://doi.org/10.1097/01.sla.0000225113.88433.cf
Chen TY, Chen CL, Tsang LL et al (2008) Correlation between hepatic steatosis, hepatic volume, and spleen volume in live liver donors. Transplant Proc 40:2481–2483. https://doi.org/10.1016/j.transproceed.2008.08.045
Tang A, Chen J, Le TA et al (2015) Cross-sectional and longitudinal evaluation of liver volume and total liver fat burden in adults with nonalcoholic steatohepatitis. Abdom Imaging 40:26–37. https://doi.org/10.1007/s00261-014-0175-0
Luo RB, Suzuki T, Hooker JC et al (2018) How bariatric surgery affects liver volume and fat density in NAFLD patients. Surg Endosc 32:1675–1682. https://doi.org/10.1007/s00464-017-5846-9
Bian H, Hakkarainen A, Zhou Y, Lundbom N, Olkkonen VM, Yki-Jarvinen H (2015) Impact of non-alcoholic fatty liver disease on liver volume in humans. Hepatol Res 45:210–219. https://doi.org/10.1111/hepr.12338
Kromrey ML, Ittermann T, vWahsen C, et al (2018) Reference values of liver volume in Caucasian population and factors influencing liver size. Eur J Radiol 106:32–37. https://doi.org/10.1016/j.ejrad.2018.07.005
Eshraghian A, Rasekhi A, Nikeghbalian S et al (2022) Hepatic computed tomography volumetry for noninvasive detection of hepatic steatosis and steatohepatitis in living liver donors. Exp Clin Transplant 20:388–394. https://doi.org/10.6002/ect.2019.0089
Siriwardana RC, Chan SC, Chok KS, Lo CM, Fan ST (2011) Effects of the liver volume and donor steatosis on errors in the estimated standard liver volume. Liver Transpl 17:1437–1442. https://doi.org/10.1002/lt.22430
Ha Y, Shim JH, Song GW et al (2017) Role of computed tomography volumetry in estimating liver weights in surgical patients with hepatic steatosis. Exp Clin Transplant 15:196–202. https://doi.org/10.6002/ect.2016.0065
Vauthey JN, Chaoui A, Do KA et al (2000) Standardized measurement of the future liver remnant prior to extended liver resection: methodology and clinical associations. Surgery 127:512–519. https://doi.org/10.1067/msy.2000.105294
Urata K, Kawasaki S, Matsunami H et al (1995) Calculation of child and adult standard liver volume for liver transplantation. Hepatology 21:1317–1321
Hashimoto T, Sugawara Y, Tamura S et al (2006) Estimation of standard liver volume in Japanese living liver donors. J Gastroenterol Hepatol 21:1710–1713. https://doi.org/10.1111/j.1440-1746.2006.04433.x
Poovathumkadavil A, Leung KF, Al Ghamdi HM, Othman Iel H, Meshikhes AW (2010) Standard formula for liver volume in Middle Eastern Arabic adults. Transplant Proc 42:3600–3605. https://doi.org/10.1016/j.transproceed.2010.07.098
Heinemann A, Wischhusen F, Puschel K, Rogiers X (1999) Standard liver volume in the Caucasian population. Liver Transpl Surg 5:366–368. https://doi.org/10.1002/lt.500050516
Kim DW, Ha J, Lee SS et al (2021) Population-based and personalized reference intervals for liver and spleen volumes in healthy individuals and those with viral hepatitis. Radiology 301:339–347. https://doi.org/10.1148/radiol.2021204183
Choi SH, Kim KW, Kwon HJ et al (2019) Clinical usefulness of gadoxetic acid-enhanced MRI for evaluating biliary anatomy in living donor liver transplantation. Eur Radiol 29:6508–6518. https://doi.org/10.1007/s00330-019-06292-8
Jang JK, Lee SS, Kim B et al (2019) Agreement and reproducibility of proton density fat fraction measurements using commercial mr sequences across different platforms: a multivendor, multi-institutional phantom experiment. Invest Radiol 54:517–523. https://doi.org/10.1097/RLI.0000000000000561
Zhong X, Nickel MD, Kannengiesser SA, Dale BM, Kiefer B, Bashir MR (2014) Liver fat quantification using a multi-step adaptive fitting approach with multi-echo GRE imaging. Magn Reson Med 72:1353–1365. https://doi.org/10.1002/mrm.25054
Ren J, Dimitrov I, Sherry AD, Malloy CR (2008) Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla. J Lipid Res 49:2055–2062. https://doi.org/10.1194/jlr.D800010-JLR200
Szczepaniak LS, Nurenberg P, Leonard D et al (2005) Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 288:E462-468. https://doi.org/10.1152/ajpendo.00064.2004
DuBois D, DuBois EF (1916) Clinical calorimetry: tenth paper a formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17:863–871. https://doi.org/10.1001/archinte.1916.00080130010002
Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317:1098. https://doi.org/10.1056/NEJM198710223171717
Kleiner DE, Brunt EM, Van Natta M et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321. https://doi.org/10.1002/hep.20701
Tang A, Tan J, Sun M et al (2013) Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 267:422–431. https://doi.org/10.1148/radiol.12120896
Yang X, Yang JD, Lee S et al (2018) Estimation of standard liver volume using CT volume, body composition, and abdominal geometry measurements. Yonsei Med J 59:546–553. https://doi.org/10.3349/ymj.2018.59.4.546
Funding
This research was supported by a National Research Foundation of Korea (NRF) grant, funded by the Korean Government (MSIT) (2020R1F1A1048826). National Research Foundation of Korea,2020R1F1A1048826,Seung Soo Lee
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Guarantor
The scientific guarantor of this publication is Seung Soo Lee.
Conflict of interest
The authors declare that they have no conflict of interest.
Statistics and biometry
Na Young Kim kindly provided statistical advice for this manuscript.
Informed consent
Written informed consent was waived by the Institutional Review Board.
Ethical approval
Institutional Review Board approval was obtained.
Methodology
• retrospective
• observational
• performed at one institution
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Choi, J.Y., Lee, S.S., Kim, N.Y. et al. The effect of hepatic steatosis on liver volume determined by proton density fat fraction and deep learning–measured liver volume. Eur Radiol 33, 5924–5932 (2023). https://doi.org/10.1007/s00330-023-09603-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00330-023-09603-2