Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34. https://doi.org/10.3322/caac.21551
Article
PubMed
Google Scholar
Crosbie PA, Shah R, Summers Y, Dive C, Blackhall F (2013) Prognostic and predictive biomarkers in early stage NSCLC: CTCs and serum/plasma markers. Transl Lung Cancer Res 2:382. https://doi.org/10.3978/j.issn.2218-6751.2013.09.02
CAS
Article
PubMed
PubMed Central
Google Scholar
Detterbeck FC, Boffa DJ, Tanoue LT (2009) The new lung cancer staging system. Chest 136:260–271. https://doi.org/10.1378/chest.08-0978
Article
PubMed
Google Scholar
Lee SY, Jung DK, Choi JE et al (2017) Functional polymorphisms in PD-L1 gene are associated with the prognosis of patients with early stage non-small cell lung cancer. Gene 599:28–35. https://doi.org/10.1016/j.gene.2016.11.007
CAS
Article
PubMed
Google Scholar
Lee SY, Jin CC, Choi JE et al (2016) Genetic polymorphisms in glycolytic pathway are associated with the prognosis of patients with early stage non-small cell lung cancer. Sci Rep 6:35603. https://doi.org/10.1038/srep35603
CAS
Article
PubMed
PubMed Central
Google Scholar
Aoki T, Hanamiya M, Uramoto H, Hisaoka M, Yamashita Y, Korogi Y (2012) Adenocarcinomas with predominant ground-glass opacity: correlation of morphology and molecular biomarkers. Radiology 264:590–596. https://doi.org/10.1148/radiol.12111337
Article
PubMed
Google Scholar
Lee HY, Lee SW, Lee KS et al (2015) Role of CT and PET imaging in predicting tumor recurrence and survival in patients with lung adenocarcinoma: a comparison with the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society Classification of Lung Adenocarcinoma. J Thorac Oncol 10:1785–1794. https://doi.org/10.1097/JTO.0000000000000689
CAS
Article
PubMed
Google Scholar
Aerts HJWL, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:1–9. https://doi.org/10.1038/ncomms5006
CAS
Article
Google Scholar
Liu Z, Wang S, Dong D et al (2019) The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics 9:1303. https://doi.org/10.7150/thno.30309
Article
PubMed
PubMed Central
Google Scholar
Oh D, Kim S, Park D et al (2018) Correction of severe beam-hardening artifacts via a high-order linearization function using a prior-image-based parameter selection method. Med Phys 45:4133–4144. https://doi.org/10.1002/mp.13072
Kim Y, Oh D, Hwang D (2017) Small-scale noise-like moiré pattern caused by detector sensitivity inhomogeneity in computed tomography. Opt Express 25:27127–27145. https://doi.org/10.1364/OE.25.027127
Article
PubMed
Google Scholar
Kim Y, Baek J, Hwang D (2014) Ring artifact correction using detector line-ratios in computed tomography. Opt Express 22:13380–13392. https://doi.org/10.1364/OE.22.013380
Article
PubMed
Google Scholar
Eo T, Jun Y, Kim T, Jang J, Lee HJ, Hwang D (2018) KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn Reson Med 80:2188–2201. https://doi.org/10.1002/mrm.27201
CAS
Article
PubMed
Google Scholar
Eo T, Shin H, Jun Y, Kim T, Hwang D (2020) Accelerating Cartesian MRI by domain-transform manifold learning in phase-encoding direction. Med Image Anal 63:101689. https://doi.org/10.1016/j.media.2020.101689
Article
PubMed
Google Scholar
Shafiq-ul-Hassan M, Latifi K, Zhang G, Ullah G, Gillies R, Moros E (2018) Voxel size and gray level normalization of CT radiomic features in lung cancer. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-28895-9
CAS
Article
Google Scholar
Traverso A, Wee L, Dekker A, Gillies R (2018) Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol Biol Phys 102:1143–1158. https://doi.org/10.1016/j.ijrobp.2018.05.053
Article
PubMed
PubMed Central
Google Scholar
Choe J, Lee S, Do K et al (2019) Deep learning–based image conversion of CT reconstruction kernels improves radiomics reproducibility for pulmonary nodules or masses. Radiology 292:365–373. https://doi.org/10.1148/radiol.2019181960
Article
PubMed
Google Scholar
Berenguer R, Pastor-Juan MR, Canales-Vázquez J et al (2018) Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. Radiology 288:407–415. https://doi.org/10.1148/radiol.2018172361
Article
PubMed
Google Scholar
Orlhac F, Frouin F, Nioche C, Ayache N, Buvat I (2019) Validation of a method to compensate multicenter effects affecting CT radiomics. Radiology 291:53–59. https://doi.org/10.1148/radiol.2019182023
Article
PubMed
Google Scholar
Park BW, Kim JK, Heo C, Park KJ (2020) Reliability of CT radiomic features reflecting tumour heterogeneity according to image quality and image processing parameters. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-60868-9
CAS
Article
Google Scholar
Kawase A, Yoshida J, Ishii G et al (2011) Differences between squamous cell carcinoma and adenocarcinoma of the lung: are adenocarcinoma and squamous cell carcinoma prognostically equal? Jpn J Clin Oncol 42:189–195. https://doi.org/10.1093/jjco/hyr188
Article
PubMed
Google Scholar
Gallardo-Estrella L, Lynch DA, Prokop M et al (2016) Normalizing computed tomography data reconstructed with different filter kernels: effect on emphysema quantification. Eur Radiol 26:478–486. https://doi.org/10.1007/s00330-015-3824-y
Article
PubMed
Google Scholar
Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30:1323–1341. https://doi.org/10.1016/j.mri.2012.05.001
Article
PubMed
PubMed Central
Google Scholar
Griethuysen JJ, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339
CAS
Article
PubMed
PubMed Central
Google Scholar
Parmar C, Velazquez ER, Leijenaar R et al (2014) Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One 9:e102107. https://doi.org/10.1371/journal.pone.0102107
CAS
Article
PubMed
PubMed Central
Google Scholar
Owens CA, Peterson CB, Tang C et al (2018) Lung tumor segmentation methods: impact on the uncertainty of radiomics features for non-small cell lung cancer. PLoS One 13:e0205003. https://doi.org/10.1371/journal.pone.0205003
CAS
Article
PubMed
PubMed Central
Google Scholar
Kim S, Bae WC, Masuda K, Chung CB, Hwang D (2018) Fine-grain segmentation of the intervertebral discs from MR spine images using deep convolutional neural networks: BSU-Net. Appl Sci Basel 8:1656. https://doi.org/10.3390/app8091656
Article
PubMed
PubMed Central
Google Scholar
Kim S, Bae WC, Masuda K, Chung CB, Hwang D (2018) Semi-automatic segmentation of vertebral bodies in MR images of human lumbar spines. Appl Sci Basel 8:1586. https://doi.org/10.3390/app8091586
Article
PubMed
PubMed Central
Google Scholar
Zhao B, James LP, Moskowitz CS et al (2009) Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non–small cell lung cancer. Radiology 252:263–272. https://doi.org/10.1148/radiol.2522081593
Article
PubMed
PubMed Central
Google Scholar
Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL (2015) Machine learning methods for quantitative radiomic biomarkers. Sci Rep 5:13087. https://doi.org/10.1038/srep13087
CAS
Article
PubMed
PubMed Central
Google Scholar
Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60
Article
Google Scholar
Woodard GA, Jones KD, Jablons DM (2016) Lung cancer staging and prognosis. Lung Cancer 170:47–75. https://doi.org/10.1007/978-3-319-40389-2_3
Article
Google Scholar
Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324
Article
Google Scholar
DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845. https://doi.org/10.2307/2531595
CAS
Article
PubMed
Google Scholar
Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481. https://doi.org/10.1080/01621459.1958.10501452
Article
Google Scholar
Cox DR (1972) Regression models and life-tables. J R Stat Soc Ser B Stat Methodol 34:187–202. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
Article
Google Scholar
Mantel N (1966) Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 50:163–170
CAS
PubMed
Google Scholar
Clausi DA (2002) An analysis of co-occurrence texture statistics as a function of grey level quantization. Can Aeronaut Space J 28:45–62. https://doi.org/10.5589/m02-004
Article
Google Scholar
Moon Y, Sung SW, Moon SW, Park JK (2016) Risk factors for recurrence after sublobar resection in patients with small (2 cm or less) non-small cell lung cancer presenting as a solid-predominant tumor on chest computed tomography. J Thorac Dis 8:2018. https://doi.org/10.21037/jtd.2016.07.90
Article
PubMed
PubMed Central
Google Scholar
Hattori A, Matsunaga T, Takamochi K, Oh S, Suzuki K (2017) Importance of ground glass opacity component in clinical stage IA radiologic invasive lung cancer. Ann Thorac Surg 104:313–320. https://doi.org/10.1016/j.athoracsur.2017.01.076
Article
PubMed
Google Scholar
Bakr S, Gevaert O, Echegaray S et al (2018) A radiogenomic dataset of non-small cell lung cancer. Sci Data 5:1–9. https://doi.org/10.1038/sdata.2018.202
CAS
Article
Google Scholar
Zwanenburg A, Leger S, Vallières M, Löck S (2016) Image biomarker standardisation initiative. arXiv 1612:07003. https://doi.org/10.48550/arXiv.1612.07003
Article
Google Scholar
Lambin P, Leijenaar RT, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762. https://doi.org/10.1038/nrclinonc.2017.141
Article
PubMed
Google Scholar
Chen Q, Zhang L, Mo X et al (2021) Current status and quality of radiomic studies for predicting immunotherapy response and outcome in patients with non-small cell lung cancer: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 49:345–360. https://doi.org/10.1007/s00259-021-05509-7
Article
PubMed
Google Scholar