Skip to main content

Advertisement

Log in

Comparison of metabolic and immunologic responses to transarterial chemoembolization with different chemoembolic regimens in a rabbit VX2 liver tumor model

  • Gastrointestinal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

The goal of this study was to investigate the effects of TACE using Lipiodol, Oncozene™ drug-eluting embolics (DEEs), or LUMI™-DEEs alone, or combined with bicarbonate on the metabolic and immunological tumor microenvironment in a rabbit VX2 tumor model.

Methods

VX2 liver tumor-bearing rabbits were assigned to five groups. MRI and extracellular pH (pHe) mapping using Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) were performed before and after intra-arterial therapy with conventional TACE (cTACE), DEE-TACE with Idarubicin-eluting Oncozene™-DEEs, or Doxorubicin-eluting LUMI™-DEEs, each with or without prior bicarbonate infusion, and in untreated rabbits or treated with intra-arterial bicarbonate only. Imaging results were validated with immunohistochemistry (IHC) staining of cell viability (PCNA, TUNEL) and immune response (HLA-DR, CD3). Statistical analysis was performed using Mann–Whitney U test.

Results

pHe mapping revealed that combining cTACE with prior bicarbonate infusion significantly increased tumor pHe compared to control (p = 0.0175) and cTACE alone (p = 0.0025). IHC staining revealed peritumoral accumulation of HLA-DR+ antigen-presenting cells and CD3 + T-lymphocytes in controls. cTACE-treated tumors showed reduced immune infiltration, which was restored through combination with bicarbonate. DEE-TACE with Oncozene™-DEEs induced moderate intratumoral and marked peritumoral infiltration, which was slightly reduced with bicarbonate. Addition of bicarbonate prior to LUMI™-beads enhanced peritumoral immune cell infiltration compared to LUMI™-beads alone and resulted in the strongest intratumoral immune cell infiltration across all treated groups.

Conclusions

The choice of chemoembolic regimen for TACE strongly affects post-treatment TME pHe and the ability of immune cells to accumulate and infiltrate the tumor tissue.

Key Points

Combining conventional transarterial chemotherapy with prior bicarbonate infusion increases the pHe towards a more physiological value (p = 0.0025).

Peritumoral infiltration and intratumoral accumulation patterns of antigen-presenting cells and T-lymphocytes after transarterial chemotherapy were dependent on the choice of the chemoembolic regimen.

Combination of intra-arterial treatment with Doxorubicin-eluting LUMI™-beads and bicarbonate infusion resulted in the strongest intratumoral presence of immune cells (positivity index of 0.47 for HLADR+-cells and 0.62 for CD3+-cells).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APC:

Antigen-presenting cells

BIRDS:

Biosensor Imaging of Redundant Deviation in Shifts

cTACE:

Conventional TACE

DEE-TACE:

TACE with drug-eluting embolics

HCC:

Hepatocellular carcinoma

IHC:

Immunohistochemistry

pHe :

Extracellular pH

PI:

Positivity index

TACE:

Transarterial chemoembolization

TME:

Tumor microenvironment

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Dimitroulis D, Damaskos C, Valsami S et al (2017) From diagnosis to treatment of hepatocellular carcinoma: an epidemic problem for both developed and developing world. World J Gastroenterol 23:5282–5294. https://doi.org/10.3748/wjg.v23.i29.5282

    Article  PubMed  PubMed Central  Google Scholar 

  3. Forner A, Reig ME, Rodriguez de Lope C, Bruix J (2010) Current strategy for staging and treatment: the BCLC update and future prospects. Semin Liver Dis 30:061–074. https://doi.org/10.1055/s-0030-1247133

    Article  CAS  Google Scholar 

  4. Llovet JM, Bruix J (2003) Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology 37:429–442. https://doi.org/10.1053/jhep.2003.50047

    Article  CAS  PubMed  Google Scholar 

  5. Lee H-S, Kim KM, Yoon J-H et al (2002) Therapeutic efficacy of transcatheter arterial chemoembolization as compared with hepatic resection in hepatocellular carcinoma patients with compensated liver function in a hepatitis B virus-endemic area: a prospective cohort study. J Clin Oncol 20:4459–4465. https://doi.org/10.1200/JCO.2002.02.013

    Article  PubMed  Google Scholar 

  6. Llovet JM, Real MI, Montaña X et al (2002) Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet 359:1734–1739. https://doi.org/10.1016/S0140-6736(02)08649-X

    Article  PubMed  Google Scholar 

  7. Lencioni R (2010) Loco-regional treatment of hepatocellular carcinoma. Hepatology 52:762–773. https://doi.org/10.1002/hep.23725

    Article  CAS  PubMed  Google Scholar 

  8. Zou JH, Zhang L, Ren ZG, Ye SL (2016) Efficacy and safety of cTACE versus DEB-TACE in patients with hepatocellular carcinoma: a meta-analysis. J Dig Dis 17:510–517. https://doi.org/10.1111/1751-2980.12380

    Article  CAS  PubMed  Google Scholar 

  9. Varela M, Real MI, Burrel M et al (2007) Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol 46:474–481. https://doi.org/10.1016/j.jhep.2006.10.020

    Article  CAS  PubMed  Google Scholar 

  10. Marelli L, Stigliano R, Triantos C et al (2007) Transarterial therapy for hepatocellular carcinoma: which technique is more effective? A systematic review of cohort and randomized studies. Cardiovasc Intervent Radiol 30:6–25. https://doi.org/10.1007/s00270-006-0062-3

    Article  PubMed  Google Scholar 

  11. Sacco R, Bargellini I, Bertini M et al (2011) Conventional versus doxorubicin-eluting bead transarterial chemoembolization for hepatocellular carcinoma. J Vasc Interv Radiol 22:1545–1552. https://doi.org/10.1016/j.jvir.2011.07.002

    Article  PubMed  Google Scholar 

  12. Lammer J, Malagari K, Vogl T et al (2010) Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol 33:41–52. https://doi.org/10.1007/s00270-009-9711-7

    Article  PubMed  Google Scholar 

  13. Savic LJ, Schobert IT, Peters D et al (2020) Molecular imaging of extracellular tumor pH to reveal effects of locoregional therapy on liver cancer microenvironment. Clin Cancer Res 26:428–438. https://doi.org/10.1158/1078-0432.CCR-19-1702

    Article  CAS  PubMed  Google Scholar 

  14. Fischer K, Hoffmann P, Voelkl S et al (2007) Inhibitory effect of tumor cell–derived lactic acid on human T cells. Blood 109:3812–3819. https://doi.org/10.1182/blood-2006-07-035972

    Article  CAS  PubMed  Google Scholar 

  15. Huber V, Camisaschi C, Berzi A et al (2017) Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin Cancer Biol 43:74–89. https://doi.org/10.1016/j.semcancer.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  16. Goetze K, Walenta S, Ksiazkiewicz M et al (2011) Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int J Oncol 39:453–463. https://doi.org/10.3892/ijo.2011.1055

    Article  CAS  PubMed  Google Scholar 

  17. Coman D, Peters DC, Walsh JJ et al (2020) Extracellular pH mapping of liver cancer on a clinical 3T MRI scanner. Magn Reson Med 83:1553–1564. https://doi.org/10.1002/mrm.28035

    Article  CAS  PubMed  Google Scholar 

  18. Rao JU, Coman D, Walsh JJ et al (2017) Temozolomide arrests glioma growth and normalizes intratumoral extracellular pH. Sci Rep 7:7865. https://doi.org/10.1038/s41598-017-07609-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Savic LJ, Doemel LA, Schobert IT, et al (2020) Molecular MRI of the immuno-metabolic interplay in a rabbit liver tumor model: a biomarker for resistance mechanisms in tumor-targeted therapy? Radiology 296(3):575–583. https://doi.org/10.1148/radiol.2020200373

  20. Ayaru L, Pereira SP, Alisa A et al (1950) (2007) Unmasking of alpha-fetoprotein-specific CD4(+) T cell responses in hepatocellular carcinoma patients undergoing embolization. J Immunol Baltim Md 178:1914–1922. https://doi.org/10.4049/jimmunol.178.3.1914

    Article  Google Scholar 

  21. Mizukoshi E, Nakamoto Y, Arai K et al (2011) Comparative analysis of various tumor-associated antigen-specific t-cell responses in patients with hepatocellular carcinoma. Hepatology 53:1206–1216. https://doi.org/10.1002/hep.24149

    Article  CAS  PubMed  Google Scholar 

  22. Flecken T, Schmidt N, Hild S et al (2014) Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology 59:1415–1426. https://doi.org/10.1002/hep.26731

    Article  CAS  PubMed  Google Scholar 

  23. Deschamps F, Moine L, Isoardo T et al (2017) Parameters for stable water-in-oil lipiodol emulsion for liver trans-arterial chemo-embolization. Cardiovasc Intervent Radiol 40:1927–1932. https://doi.org/10.1007/s00270-017-1763-5

    Article  CAS  PubMed  Google Scholar 

  24. LAS0049–01-TANDEM-Loading-Guidance-OUS-08.21.2013.pdf.pdf

  25. Gaba RC, Emmadi R, Parvinian A, Casadaban LC (2016) Correlation of doxorubicin delivery and tumor necrosis after drug-eluting bead transarterial chemoembolization of rabbit VX2 liver tumors. Radiology 280:752–761. https://doi.org/10.1148/radiol.2016152099

    Article  PubMed  Google Scholar 

  26. Levy EB, Krishnasamy VP, Lewis AL et al (2016) First human experience with directly image-able iodinated embolization microbeads. Cardiovasc Intervent Radiol 39:1177–1186. https://doi.org/10.1007/s00270-016-1364-8

    Article  PubMed  PubMed Central  Google Scholar 

  27. Coman D, Trubel HK, Rycyna RE, Hyder F (2009) Brain temperature and pH measured by 1H chemical shift imaging of a thulium agent. NMR Biomed 22:229–239. https://doi.org/10.1002/nbm.1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coman D, Trubel HK, Hyder F (2010) Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP5− and TmDOTMA−. NMR Biomed 23:277–285. https://doi.org/10.1002/nbm.1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Buck MD, Sowell RT, Kaech SM, Pearce EL (2017) Metabolic instruction of immunity. Cell 169:570–586. https://doi.org/10.1016/j.cell.2017.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boulin M, Guiu S, Chauffert B et al (2011) Screening of anticancer drugs for chemoembolization of hepatocellular carcinoma. Anticancer Drugs 22:741–748. https://doi.org/10.1097/CAD.0b013e328346a0c5

    Article  CAS  PubMed  Google Scholar 

  31. Broz ML, Binnewies M, Boldajipour B et al (2014) Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26:638–652. https://doi.org/10.1016/j.ccell.2014.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kawakami T, Koike A, Maehara T et al (2020) Bicarbonate enhances the inflammatory response by activating JAK/STAT signalling in LPS + IFN-γ-stimulated macrophages. J Biochem 167:623–631. https://doi.org/10.1093/jb/mvaa010

    Article  CAS  PubMed  Google Scholar 

  33. Abumanhal-Masarweh H, Koren L, Zinger A et al (2019) Sodium bicarbonate nanoparticles modulate the tumor pH and enhance the cellular uptake of doxorubicin. J Control Release 296:1–13. https://doi.org/10.1016/j.jconrel.2019.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lewis AL, Gonzalez MV, Lloyd AW et al (2006) DC bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization. J Vasc Interv Radiol 17:335–342. https://doi.org/10.1097/01.RVI.0000195323.46152.B3

    Article  PubMed  Google Scholar 

  35. Schmidt N, Thimme R (2016) Role of immunity in pathogenesis and treatment of hepatocellular carcinoma. Dig Dis 34:429–437. https://doi.org/10.1159/000444558

    Article  PubMed  Google Scholar 

  36. Herbst RS, Soria J-C, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567. https://doi.org/10.1038/nature14011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Erinjeri JP, Fine GC, Adema GJ et al (2019) Immunotherapy and the interventional oncologist: challenges and opportunities—a society of interventional oncology white paper. Radiology 292:25–34. https://doi.org/10.1148/radiol.2019182326

    Article  PubMed  Google Scholar 

  38. Singh P, Toom S, Avula A et al (2020) The immune modulation effect of locoregional therapies and its potential synergy with immunotherapy in hepatocellular carcinoma. J Hepatocell Carcinoma 7:11–17. https://doi.org/10.2147/JHC.S187121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. El-Khoueiry AB, Sangro B, Yau T et al (2017) Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389:2492–2502. https://doi.org/10.1016/S0140-6736(17)31046-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Behm B, Fazio PD, Michl P et al (2016) Additive antitumour response to the rabbit VX2 hepatoma by combined radio frequency ablation and toll like receptor 9 stimulation. Gut 65:134–143. https://doi.org/10.1136/gutjnl-2014-308286

    Article  CAS  PubMed  Google Scholar 

  41. van Breugel JMM, Geschwind J-F, Mirpour S et al (2019) Theranostic application of lipiodol for transarterial chemoembolization in a VX2 rabbit liver tumor model. Theranostics 9:3674–3686. https://doi.org/10.7150/thno.32943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Borde T, Laage Gaupp F, Geschwind J-F et al (2020) Idarubicin-loaded ONCOZENE drug-eluting bead chemoembolization in a rabbit liver tumor model: investigating safety, therapeutic efficacy, and effects on tumor microenvironment. J Vasc Interv Radiol 31:1706-1716.e1. https://doi.org/10.1016/j.jvir.2020.04.010

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Christi Hawley, Marina Mammarian, Stephanie Thorne, Vasily Pekurovsky, and Jonathan Tefera for their support in animal care and handling.

Funding

This study was supported by the following grants: NIH (R01 CA206180 and R01 EB023366) and the Society of Interventional Oncology (19–001324). Research reported in this article was also supported by the Yale Liver Center Microscopy Core. JW was supported in part by T32GM-007205 (Yale MSTP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Chapiro.

Ethics declarations

Guarantor

The scientific guarantor of this study is Julius Chapiro, MD.

Conflict of interest

The co-author MingDe Lin is a Visage Imaging, Inc., employee and stock holder. MingDe Lin is an Executive Councilor for Tau Beta Pi Association, Inc.

The other authors declare no competing interests.

Statistics and biometry

Lawrence Staib, PhD, Yale School of Medicine, and Dr. rer. nat. Konrad Neumann, Institute for Biometry and Clinical Epidiomology of the Charite Universitätsmedizin Berlin, kindly provided statistical advice for this manuscript.

Informed consent

Approval from the institutional animal care committee was obtained.

Ethical approval

Institutional Review Board approval was not required because no patients were included in this study.

Study subjects or cohorts overlap

Data from a subgroup of animals were used for a published poster “Characterization of liver tumor microenvironment after treatment with different embolic materials using non-invasive molecular imaging of extracellular pH” on the conference of the Society of Interventional Oncology in 2020. Furthermore, data derived from experiments with a subset of animals (n = 12) were used in previous publications “Molecular Imaging of Extracellular Tumor pH to Reveal Effects of Locoregional Therapy on Liver Cancer Microenvironment” by Savic LJ, Schobert IT, Peters D, et al. published in Clinical Cancer Research in 2020 and “Molecular MRI of the Immuno-Metabolic Interplay in a Rabbit Liver Tumor Model: A Biomarker for Resistance Mechanisms in Tumor-targeted Therapy?” by Savic LJ, Doemel LA, Schobert IT, et al. published in Radiology in 2020.

Methodology

• Experimental

• Performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Luzie A. Doemel and Jessica G. Santana contributed equally to this work and therefore share first authorship

Julius Chapiro and Daniel Coman shared contribution as senior authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doemel, L.A., Santana, J.G., Savic, L.J. et al. Comparison of metabolic and immunologic responses to transarterial chemoembolization with different chemoembolic regimens in a rabbit VX2 liver tumor model. Eur Radiol 32, 2437–2447 (2022). https://doi.org/10.1007/s00330-021-08337-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-021-08337-3

Keywords

Navigation