Abstract
Objective
The aim of this study was to investigate the effects of plaque-related factors on the diagnostic performance of an artificial intelligence coronary-assisted diagnosis system (AI-CADS).
Methods
Patients who underwent coronary computed tomography angiography (CCTA) and invasive coronary angiography (ICA) were retrospectively included in this study. The degree of stenosis in each vessel was collected from CCTA and ICA, and the information on plaque-related factors (plaque length, plaque type, and coronary artery calcium score (CAC)) of the vessels with plaques was collected from CCTA.
Results
In total, 1224 vessels in 306 patients (166 men; 65.7 ± 10.1 years) were analyzed. Of these, 391 vessels in 249 patients showed significant stenosis using ICA as the gold standard. Using per-vessel as the unit, the area under the curves of coronary stenosis ≥ 50% for AI-CADS, doctor, and AI-CADS + doctor was 0.764, 0.837, and 0.853, respectively. The accuracies in interpreting the degree of coronary stenosis were 56.0%, 68.1%, and 71.2%, respectively. Seven hundred fifty vessels showed plaques on CCTA; plaque type did not affect the interpretation results by AI-CADS (chi-square test: p = 0.0093; multiple logistic regression: p = 0.4937). However, the interpretation results for plaque length (chi-square test: p < 0.0001; multiple logistic regression: p = 0.0061) and CACs (chi-square test: p < 0.0001; multiple logistic regression: p = 0.0001) were significantly different.
Conclusion
AI-CADS has an ability to distinguish ≥ 50% coronary stenosis, but additional manual interpretation based on AI-CADS is necessary. The plaque length and CACs will affect the diagnostic performance of AI-CADS.
Key Points
• AI-CADS can help radiologists quickly assess CCTA and improve diagnostic confidence.
• Additional manual interpretation on the basis of AI-CADS is necessary.
• The plaque length and CACs will affect the diagnostic performance of AI-CADS.
This is a preview of subscription content, access via your institution.






Abbreviations
- AI-CADS:
-
Artificial intelligence coronary-assisted diagnosis system
- AUC:
-
Area under the curve
- CABG:
-
Coronary artery bypass grafting
- CACs:
-
Coronary artery calcium score
- CAD:
-
Coronary artery disease
- CCTA:
-
Coronary computed tomography angiography
- CI:
-
Confidence interval
- ICA:
-
Invasive coronary angiography
- NPV:
-
Negative predictive value
- PCI:
-
Percutaneous coronary intervention
- PPV:
-
Positive predictive value
- ROC:
-
Receiver operating characteristic
References
Roth GA, Johnson C, Abajobir A et al (2017) Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 70:1–25. https://doi.org/10.1016/j.jacc.2017.04.052
Shaw LJ, Hausleiter J, Achenbach S et al (2012) Coronary computed tomographic angiography as a gatekeeper to invasive diagnostic and surgical procedures: results from the multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: an International Multicenter) registry. J Am Coll Cardiol 60:2103–2114. https://doi.org/10.1016/j.jacc.2012.05.062
Thilo C, Gebregziabher M, Meinel FG et al (2015) Computer-aided stenosis detection at coronary CT angiography: effect on performance of readers with different experience levels. Eur Radiol 25:694–702. https://doi.org/10.1007/s00330-014-3460-y
Arnoldi E, Gebregziabher M, Schoepf UJ et al (2010) Automated computer-aided stenosis detection at coronary CT angiography: initial experience. Eur Radiol 20:1160–1167. https://doi.org/10.1007/s00330-009-1644-7
Chen M, Wang X, Hao G et al (2020) Diagnostic performance of deep learning-based vascular extraction and stenosis detection technique for coronary artery disease. Br J Radiol 93:20191028. https://doi.org/10.1259/bjr.20191028
Rief M, Kranz A, Hartmann L, Roehle R, Laule M, Dewey M (2014) Computer-aided CT coronary artery stenosis detection: comparison with human reading and quantitative coronary angiography. Int J Cardiovasc Imaging 30:1621–1627. https://doi.org/10.1007/s10554-014-0513-x
Abramowicz AJ, Daubert MA, Malhotra V et al (2013) Computer-aided analysis of 64-slice coronary computed tomography angiography: a comparison with manual interpretation. Heart Int 8:e2. https://doi.org/10.4081/hi.2013.e2
AbdAlamir M, Noack P, Jang KH, Moore JA, Goldberg R, Poon M (2018) Computer-aided analysis of 64- and 320-slice coronary computed tomography angiography: a comparison with expert human interpretation. Int J Cardiovasc Imaging 34:1473–1483. https://doi.org/10.1007/s10554-018-1361-x
Kang KW, Chang HJ, Shim H et al (2012) Feasibility of an automatic computer-assisted algorithm for the detection of significant coronary artery disease in patients presenting with acute chest pain. Eur J Radiol 81:e640-646. https://doi.org/10.1016/j.ejrad.2012.01.017
Anders K, Achenbach S, Petit I, Daniel WG, Uder M, Pflederer T (2013) Accuracy of automated software-guided detection of significant coronary artery stenosis by CT angiography: comparison with invasive catheterisation. Eur Radiol 23:1218–1225. https://doi.org/10.1007/s00330-012-2717-6
Shaw LJ, Blankstein R, Bax JJ et al (2020) Society of Cardiovascular Computed Tomography / North American Society of Cardiovascular Imaging – expert consensus document on coronary CT imaging of atherosclerotic plaque. J Cardiovasc Comput Tomogr 15(2):93–109. https://doi.org/10.1016/j.jcct.2020.11.002
Krone RJ, Laskey WK, Johnson C et al (2000) A simplified lesion classification for predicting success and complications of coronary angioplasty. Registry Committee of the Society for Cardiac Angiography and Intervention. Am J Cardiol 85:1179–1184. https://doi.org/10.1016/S0002-9149(00)00724-4
Cury RC, Abbara S, Achenbach S et al (2016) Coronary artery disease - reporting and data system (CAD-RADS): an expert consensus document of SCCT, ACR and NASCI: Endorsed by the ACC. JACC Cardiovasc Imaging 9:1099–1113. https://doi.org/10.1016/j.jcmg.2016.05.005
Boogers MJ, Schuijf JD, Kitslaar PH et al (2010) Automated quantification of stenosis severity on 64-slice CT: a comparison with quantitative coronary angiography. JACC Cardiovasc Imaging 3:699–709. https://doi.org/10.1016/j.jcmg.2010.01.010
Meyer M, Schoepf UJ, Fink C et al (2013) Diagnostic performance evaluation of a computer-aided simple triage system for coronary CT angiography in patients with intermediate risk for acute coronary syndrome. Acad Radiol 20:980–986. https://doi.org/10.1016/j.acra.2013.02.014
Ko BS, Wong DT, Cameron JD et al (2015) The ASLA Score: A CT Angiographic index to predict functionally significant coronary stenoses in lesions with intermediate severity-diagnostic accuracy. Radiology 276:91–101. https://doi.org/10.1148/radiol.15141231
Rossi A, Papadopoulou SL, Pugliese F et al (2014) Quantitative computed tomographic coronary angiography: does it predict functionally significant coronary stenoses. Circ Cardiovasc Imaging 7:43–51. https://doi.org/10.1161/CIRCIMAGING.112.000277
López-Palop R, Carrillo P, Cordero A et al (2013) Effect of lesion length on functional significance of intermediate long coronary lesions. Catheter Cardiovasc Interv 81:E186-194. https://doi.org/10.1002/ccd.24459
Leber AW, Becker A, Knez A et al (2006) Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol 47:672–677. https://doi.org/10.1016/j.jacc.2005.10.058
Kang DK, Im NJ, Park SM, Lim HS (2011) CT comparison of visual and computerised quantification of coronary stenosis according to plaque composition. Eur Radiol 21:712–721. https://doi.org/10.1007/s00330-010-1970-9
Otsuka M, Bruining N, Van Pelt NC et al (2008) Quantification of coronary plaque by 64-slice computed tomography: a comparison with quantitative intracoronary ultrasound. Invest Radiol 43:314–321. https://doi.org/10.1097/RLI.0b013e31816a88a9
Mitsutake R, Niimura H, Miura S et al (2006) Clinical significance of the coronary calcification score by multidetector row computed tomography for the evaluation of coronary stenosis in Japanese patients. Circ J 70:1122–1127. https://doi.org/10.1253/circj.70.1122
Nicoll R, Wiklund U, Zhao Y et al (2016) The coronary calcium score is a more accurate predictor of significant coronary stenosis than conventional risk factors in symptomatic patients: Euro-CCAD study. Int J Cardiol 207:13–19. https://doi.org/10.1016/j.ijcard.2016.01.056
Polonsky TS, McClelland RL, Jorgensen NW et al (2010) Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA 303:1610–1616. https://doi.org/10.1001/jama.2010.461
Greenland P, Bonow RO, Brundage BH et al (2007) ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography) developed in collaboration with the Society of Atherosclerosis Imaging and Prevention and the Society of Cardiovascular Computed Tomography. J Am Coll Cardiol 49:378–402. https://doi.org/10.1016/j.jacc.2006.10.001
Sangiorgi G, Rumberger JA, Severson A et al (1998) Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol 31:126–133. https://doi.org/10.1016/s0735-1097(97)00443-9
Rumberger JA, Sheedy PF, Breen JF, Schwartz RS (1995) Coronary calcium, as determined by electron beam computed tomography, and coronary disease on arteriogram: effect of patient’s sex on diagnosis. Circulation 91:1363–1367. https://doi.org/10.1161/01.cir.91.5.1363
Ong TK, Chin SP, Liew CK et al (2006) Accuracy of 64-row multidetector computed tomography in detecting coronary artery disease in 134 symptomatic patients: influence of calcification. Am Heart J 151:1323.e1–6. https://doi.org/10.1016/j.ahj.2005.12.027
Skinner JS, Smeeth L, Kendall JM, Adams PC, Timmis A (2010) NICE guidance. Chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. Heart 96:974–978. https://doi.org/10.1136/hrt.2009.190066
Acknowledgements
The authors are grateful to American Journal Experts (AJE) for their assistance with language editing. This study was supported by the Kuanren Talents Program of the Second Affiliated Hospital of Chongqing Medical University (2020-7, 2021-24).
Funding
This study has received funding from the Kuanren Talents Program of the second affiliated hospital of Chongqing Medical University (2020–7, 2021–24).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Guarantor
The scientific guarantor of this publication is Dajing Guo.
Conflict of interest
The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.
Statistics and biometry
No complex statistical methods were necessary for this paper.
Informed consent
Written informed consent was waived by the Institutional Review Board.
Ethical approval
Institutional Review Board approval was obtained.
Methodology
-
retrospective
-
observational
-
performed at one institution
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Xu, J., Chen, L., Wu, X. et al. Do plaque-related factors affect the diagnostic performance of an artificial intelligence coronary-assisted diagnosis system? Comparison with invasive coronary angiography. Eur Radiol 32, 1866–1878 (2022). https://doi.org/10.1007/s00330-021-08299-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00330-021-08299-6
Keywords
- Computed tomography angiography
- Artificial intelligence
- Coronary stenosis