Siegel RL, Miller KD, Jemal A (2019) Cancer statistics. CA Cancer J Clin 69(1):7–34
PubMed
Google Scholar
Jemal A, Siegel R, Ward E et al (2008) Cancer statistics. CA Cancer J Clin 58(2):71–96
PubMed
Google Scholar
Cancer Research UK. Types of lung cancer. www.cancerresearchuk.org/about-cancer/lung-cancer/stages-typesgrades/types. Accessed 25 Sep 2019
American cancer society. Survival rates for non-small cell lung cancer. www.cancer.org. Accessed 21 Mar 2020
Eberhardt WE, De Ruysscher D, Weder W et al (2015) 2nd ESMO Consensus Conference in Lung Cancer: locally advanced stage III non-small-cell lung cancer. Ann Oncol 26(8):1573–1588
CAS
PubMed
Google Scholar
Antonia S, Villegas A, Daniel D et al (2017) Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med 377(20):1919–1929
CAS
Article
PubMed
Google Scholar
Antonia S, Villegas A, Daniel D et al (2018) Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med 379(24):2342–2350
CAS
Article
PubMed
Google Scholar
Mok TSK, Wu Y, Kudaba I et al (2019) Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 393(10183):1819–1830
CAS
PubMed
Google Scholar
Hellmann MD, Chaft JE, William WN Jr et al (2014) Pathological response after neoadjuvant chemotherapy in resectable non-small-cell lung cancers: proposal for the use of major pathological response as a surrogate endpoint. Lancet Oncol 15(1):e42–e50
CAS
PubMed
PubMed Central
Google Scholar
Mouillet G, Monnet E, Milleron B et al (2012) Pathologic complete response to preoperative chemotherapy predicts cure in early-stage non–small-cell lung cancer: combined analysis of two IFCT randomized trials. J Thorac Oncol 7(5):841–849
CAS
PubMed
Google Scholar
Isobe K, Hata Y, Sakaguchi S et al (2012) Pathological response and prognosis of stage III non-small cell lung cancer patients treated with induction chemoradiation. Asia Pac J Clin Oncol 8(3):260–266
PubMed
Google Scholar
Chetan MR, Gleeson FV (2021) Radiomics in predicting treatment response in non-small-cell lung cancer: current status, challenges and future perspectives. Eur Radiol 31(2):1049–1058
PubMed
Google Scholar
Kumar V, Gu Y, Basu S et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30(9):1234–1248
PubMed
PubMed Central
Google Scholar
Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446
PubMed
PubMed Central
Google Scholar
Meng X, Xia W, Xie P et al (2019) Preoperative radiomic signature based on multiparametric magnetic resonance imaging for noninvasive evaluation of biological characteristics in rectal cancer. Eur Radiol 29(6):3200–3209
PubMed
Google Scholar
Wang X, Zhao X, Li Q et al (2019) Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT? Eur Radiol 29(11):6049–6058
PubMed
Google Scholar
Shi L, He Y, Yuan Z et al (2018) Radiomics for response and outcome assessment for non-small cell lung cancer. Technol Cancer Res Treat 17:1533033818782788
PubMed
PubMed Central
Google Scholar
Ramella S, Fiore M, Greco C et al (2018) A radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients. PLoS One 13:e0207455
PubMed
PubMed Central
Google Scholar
Zhang P, Yorke E, Mageras G et al (2018) Validating a predictive atlas of tumor shrinkage for adaptive radiotherapy of locally advanced lung cancer. Int J Radiat Oncol Biol Phys 102:978–986
PubMed
PubMed Central
Google Scholar
Hunter LA, Chen YP, Zhang L et al (2016) NSCLC tumor shrinkage prediction using quantitative image features. Comput Med Imaging Graph 49:29–36
PubMed
Google Scholar
Bera K, Velcheti V, Madabhushi A (2018) Novel quantitative imaging for predicting response to therapy: techniques and clinical applications. Am Soc Clin Oncol Educ Book 38(38):1008–1018
PubMed
Google Scholar
Bogowicz M, Riesterer O, Ikenberg K et al (2017) Computed tomography radiomics predicts HPV status and local tumor control after definitive radiochemotherapy in head and neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 99(4):921–928
PubMed
Google Scholar
Avanzo M, Stancanello J, El Naqa I (2017) Beyond imaging: the promise of radiomics. Phys Med 38:122–139
PubMed
Google Scholar
Van Griethuysen JJ, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107
PubMed
PubMed Central
Google Scholar
Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577
PubMed
Google Scholar
Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ (2015) Machine learning methods for quantitative radiomic biomarkers. Sci Rep 5:13087
CAS
PubMed
PubMed Central
Google Scholar
Parmar C, Grossmann P, Rietveld D, Rietbergen MM, Lambin P, Aerts HJ (2015) Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front Oncol 5:272
PubMed
PubMed Central
Google Scholar
Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238
PubMed
Google Scholar
Fernández-Delgado M, Cernadas E, Barro S, Amorim D (2014) Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res 15(1):3133–3181
Google Scholar
Coroller TP, Agrawal V, Narayan V et al (2016) Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother Oncol 119(3):480–486
PubMed
PubMed Central
Google Scholar
Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36
CAS
PubMed
Google Scholar
Wang C, Dong X, Sun X, Zhang R, Xing L (2019) Association of radiomic features with epidermal growth factor receptor mutation status in non-small cell lung cancer and survival treated with tyrosine kinase inhibitors. Nucl Med Commun 40(11):1091–1098
PubMed
Google Scholar
Kato H, Kanematsu M, Zhang X et al (2007) Computer-aided diagnosis of hepatic fibrosis: preliminary evaluation of MRI texture analysis using the finite difference method and an artificial neural network. AJR Am J Roentgenol 189(1):117–122
PubMed
Google Scholar
Feng D, Zhou Y, Xing Y et al (2018) Selection of glucocorticoid-sensitive patients in interstitial lung disease secondary to connective tissue diseases population by radiomics. Ther Clin Risk Manag 14:1975–1986
PubMed
PubMed Central
Google Scholar
Ohno Y, Fujisawa Y, Koyama H et al (2017) Dynamic contrast-enhanced perfusion area-detector CT assessed with various mathematical models: its capability for therapeutic outcome prediction for non-small cell lung cancer patients with chemoradiotherapy as compared with that of FDG-PET/CT. Eur J Radiol 86:83–91
PubMed
Google Scholar
Holdenrieder S (2016) Biomarkers along the continuum of care in lung cancer. Scand J Clin Lab Invest Suppl 245:S40–S45
PubMed
Google Scholar
Molina R, Marrades RM, Augé JM et al (2016) Assessment of a combined panel of six serum tumor markers for lung cancer. Am J Respir Crit Care Med 193(4):427–437
CAS
PubMed
Google Scholar
Wojcik E, Kulpa JK (2017) Pro-gastrin-releasing peptide (ProGRP) as a biomarker in small-cell lung cancer diagnosis, monitoring and evaluation of treatment response. Lung Cancer (Auckl) 8:231–240
CAS
Google Scholar
Lee YC, Hsieh C, Lee YL, Li C (2019) Which should be used first for ALK-positive non-small-cell lung cancer: chemotherapy or targeted therapy? A meta-analysis of five randomized trials. Medicina (Kaunas) 55(2):29
Google Scholar
Sim EH, Yang IA, Wood-Baker R, Bowman RV, Fong KM (2018) Gefitinib for advanced non-small cell lung cancer. Cochrane Database Syst Rev 1(1):CD006847
PubMed
Google Scholar
Noronha V, Patil VM, Joshi A et al (2020) Gefitinib versus gefitinib plus pemetrexed and carboplatin chemotherapy in EGFR-mutated lung cancer. J Clin Oncol 38(2):124–136
CAS
PubMed
Google Scholar
Tan PS, Bilger M, de Lima LG, Acharyya S, Haaland B (2017) Meta-analysis of first-line therapies with maintenance regimens for advanced non-small-cell lung cancer (NSCLC) in molecularly and clinically selected populations. Cancer Med 6(8):1847–1860
CAS
PubMed
PubMed Central
Google Scholar
Ravanelli M, Farina D, Morassi M et al (2013) Texture analysis of advanced non-small cell lung cancer (NSCLC) on contrast-enhanced computed tomography: prediction of the response to the first-line chemotherapy. Eur Radiol 23(12):3450–3455
PubMed
Google Scholar
Kim H, Park CM, Keam B et al (2017) The prognostic value of CT radiomic features for patients with pulmonary adenocarcinoma treated with EGFR tyrosine kinase inhibitors. PLoS One 12(11):e0187500
PubMed
PubMed Central
Google Scholar
Ravanelli M, Agazzi GM, Ganeshan B et al (2018) CT texture analysis as predictive factor in metastatic lung adenocarcinoma treated with tyrosine kinase inhibitors (TKIs). Eur J Radiol 109:130–135
PubMed
Google Scholar
Yamamoto S, Korn RL, Oklu R et al (2014) ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization. Radiology 272(2):568–576
PubMed
Google Scholar
Song J, Shi J, Dong D et al (2018) A new approach to predict progression-free survival in stage IV EGFR-mutant NSCLC patients with EGFR-TKI therapy. Clin Cancer Res 24(15):3583–3592
CAS
PubMed
Google Scholar
Jian J, Xiong F, Xia W et al (2018) Fully convolutional networks (FCNs)-based segmentation method for colorectal tumors on T2-weighted magnetic resonance images. Australas Phys Eng Sci Med 41(2):393–401
PubMed
Google Scholar
Huang L, Xia W, Zhang B, Qiu B, Gao X (2017) MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images. Comput Methods Programs Biomed 143:67–74
PubMed
Google Scholar