Skip to main content

Advertisement

Log in

Dual-energy CT in differentiating benign sinonasal lesions from malignant ones: comparison with simulated single-energy CT, conventional MRI, and DWI

  • Head and Neck
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To explore the value of dual-energy CT (DECT) for differentiating benign sinonasal lesions from malignant ones, and to compare this finding with simulated single-energy CT (SECT), conventional MRI (cMRI), and diffusion-weighted imaging (DWI).

Methods

Patients with sinonasal lesions (38 benign and 34 malignant) who were confirmed by histopathology underwent DECT, cMRI, and DWI. DECT-derived parameters (iodine concentration (IC), effective atomic number (Eff-Z), 40–180 keV (20-keV interval), virtual non-enhancement (VNC), slope (k), and linear-mixed 0.3 (Mix-0.3)), DECT morphological features, cMRI characteristics, and ADC value of benign and malignant tumors were compared using t test or chi-square test. Receiver operating characteristic (ROC) curve was performed to evaluate the diagnostic performance, and the area under the ROC curve (AUC) was compared using the Z test to select the optimal diagnostic approach.

Results

Significantly higher DECT-derived single parameters (IC, Eff-Z, 40 keV, 60 keV, 80 keV, slope (k), Mix-0.3) were found in malignant lesions than those of benign sinonasal lesions (all p < 0.004, Bonferroni correction). Combined quantitative parameters (IC, Eff-Z, 40 keV, 60 keV, 80 keV, slope (k)) can improve the diagnostic efficiency for discriminating these two entities. Combination of DECT quantitative parameters and morphological features can further improve the overall diagnostic performance, with AUC, sensitivity, specificity, and accuracy of 0.935, 96.67%, 90.00%, and 93.52%. Moreover, the AUC of DECT was higher than those of Mix-0.3 (simulated SECT), cMRI, DWI, and cMRI+DWI.

Conclusions

Compared with simulated SECT, cMRI, and DWI, DECT appears to be a more accurate imaging technique for differentiating benign from malignant sinonasal lesions.

Key Points

• DE can differentiate benign sinonasal lesions from malignant ones based on DECT-derived qualitative parameters.

• DECT appears to be more accurate in the diagnosis of sinonasal lesions when compared with simulated SECT, cMRI, and DWI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

AUC:

Area under the curve

CI:

Confidence interval

cMRI:

Conventional MRI

CT:

Computed tomography

DECT:

Dual-energy CT

DWI:

Diffusion-weighted imaging

Eff-Z:

Effective atomic number

FOV:

Field of view

IC:

Iodine concentration

ICC:

Intraclass correlation coefficient

Mix-0.3:

Linear-mixed 0.3 images

MRI:

Magnetic resonance imaging

NPV:

Negative predictive value

PPV:

Positive predictive value

ROC:

Receiver operating characteristic

ROIs:

Regions of interest

SECT:

Single-energy CT

T1WI:

T1-weighted imaging

T2WI:

T2-weighted imaging

TE:

Echo time

TR:

Repetition time

VNC:

Virtual non-enhancement

References

  1. Slootweg PJ, Ferlito A, Cardesa A et al (2013) Sinonasal tumors: a clinicopathologic update of selected tumors. Eur Arch Oto-Rhino-L 270:5–20

    Article  Google Scholar 

  2. Xiao Z, Tang Z, Qiang J et al (2018) Intravoxel incoherent motion MR imaging in the differentiation of benign and malignant sinonasal lesions: comparison with conventional diffusion-weighted MR imaging. AJNR Am J Neuroradiol 39:538–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bossi P, Farina D, Gatta G, Lombardi D, Nicolai P, Orlandi E (2016) Paranasal sinus cancer. Crit Rev Oncol Hematol 98:45–61

    Article  PubMed  Google Scholar 

  4. Goo HW, Goo JM (2017) Dual-energy CT: new horizon in medical imaging. Korean J Radiol 18:555

    Article  PubMed  PubMed Central  Google Scholar 

  5. Madani G, Beale TJ, Lund VJ (2009) Imaging of sinonasal tumors. Semin Ultrasound CT 30:25–38

    Article  Google Scholar 

  6. Maroldi R, Ravanelli M, Borghesi A (2008) Farina D. Paranasal sinus imaging. Eur J Radiol 66:372–386

    Article  PubMed  Google Scholar 

  7. Jeon TY, Kim HJ, Chung SK et al (2008) Sinonasal inverted papilloma: value of convoluted cerebriform pattern on MR imaging. AJNR Am J Neuroradiol 29:1556–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang X, Yan F, Hao H, Wu J, Chen Q, Xian J (2015) Improved performance in differentiating benign from malignant sinonasal tumors using diffusion-weighted combined with dynamic contrast-enhanced magnetic resonance imaging. Chin Med J 128:586–592

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xiao Z, Tang Z, Zhang J et al (2019) Whole-tumor histogram analysis of monoexponential and advanced diffusion-weighted imaging for sinonasal malignant tumors: correlations with histopathologic features. J Magn Reson Imaging 51:273–285

    Article  PubMed  Google Scholar 

  10. El-Gerby K, El-Anwar M (2017) Differentiating benign from malignant sinonasal lesions: feasibility of diffusion weighted MRI. Int Arch Otorhinolaryngol 21:358–365

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jiang JX, Tang ZH, Zhong YF, Qiang JW (2017) Diffusion kurtosis imaging for differentiating between the benign and malignant sinonasal lesions. J Magn Reson Imaging 45:1446–1454

    Article  PubMed  Google Scholar 

  12. Su SY, Kupferman ME, DeMonte F, Levine NB, Raza SM, Hanna EY (2014) Endoscopic resection of sinonasal cancers. Curr Oncol Rep 16:369

    Article  PubMed  Google Scholar 

  13. Roele ED, Timmer VCML, Vaassen LAA, van Kroonenburgh AMJL, Postma AA (2017) Dual-energy CT in head and neck imaging. Curr Radiol Rep 5:19

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schmid-Bindert G, Henzler T, Chu TQ et al (2012) Functional imaging of lung cancer using dual energy CT: how does iodine related attenuation correlate with standardized uptake value of 18FDG-PET-CT? Eur Radiol 22:93–103

    Article  CAS  PubMed  Google Scholar 

  15. Pelgrim GJ, van Hamersvelt RW, Willemink MJ et al (2017) Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT. Eur Radiol 27:3904–3912

    Article  PubMed  PubMed Central  Google Scholar 

  16. Koonce JD, Vliegenthart R, Schoepf UJ et al (2014) Accuracy of dual-energy computed tomography for the measurement of iodine concentration using cardiac CT protocols: validation in a phantom model. Eur Radiol 24:512–518

    Article  PubMed  Google Scholar 

  17. Wu J, Lv Y, Wang N et al (2019) The value of single-source dual-energy CT imaging for discriminating microsatellite instability from microsatellite stability human colorectal cancer. Eur Radiol 29:3782–3790

    Article  PubMed  Google Scholar 

  18. Mileto A, Allen BC, Pietryga JA et al (2017) Characterization of incidental renal mass with dual-energy CT: diagnostic accuracy of effective atomic number maps for discriminating nonenhancing cysts from enhancing masses. AJR Am J Roentgenol 209:W221–W230

    Article  PubMed  Google Scholar 

  19. Forghani R (2019) An update on advanced dual-energy CT for head and neck cancer imaging. Expert Rev Anticancer Ther 19:633–644

    Article  CAS  PubMed  Google Scholar 

  20. Li M, Zheng X, Li J et al (2012) Dual-energy computed tomography imaging of thyroid nodule specimens: comparison with pathologic findings. Invest Radiol 47:58–64

  21. Yamauchi H, Buehler M, Goodsitt MM, Keshavarzi N, Srinivasan A (2016) Dual-energy CT-based differentiation of benign posttreatment changes from primary or recurrent malignancy of the head and neck: comparison of spectral Hounsfield units at 40 and 70 keV and iodine concentration. AJR Am J Roentgenol 206:580–587

    Article  PubMed  Google Scholar 

  22. Tawfik AM, Razek AA, Kerl JM, Nour-Eldin NE, Bauer R, Vogl TJ (2014) Comparison of dual-energy CT-derived iodine content and iodine overlay of normal, inflammatory and metastatic squamous cell carcinoma cervical lymph nodes. Eur Radiol 24:574–580

    Article  PubMed  Google Scholar 

  23. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chirop Med 15:155–163

    Article  Google Scholar 

  24. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  25. Bahig H, Lapointe A, Bedwani S et al (2019) Dual-energy computed tomography for prediction of loco-regional recurrence after radiotherapy in larynx and hypopharynx squamous cell carcinoma. Eur J Radiol 110:1–6

    Article  PubMed  Google Scholar 

  26. Jiang J, Xiao Z, Tang Z, Zhong Y, Qiang J (2018) Differentiating between benign and malignant sinonasal lesions using dynamic contrast-enhanced MRI and intravoxel incoherent motion. Eur J Radiol 98:7–13

    Article  PubMed  Google Scholar 

  27. Valente G, Mamo C, Bena A et al (2006) Prognostic significance of microvessel density and vascular endothelial growth factor expression in sinonasal carcinomas. Hum Pathol 37:391–400

    Article  CAS  PubMed  Google Scholar 

  28. Ju Y, Liu A, Dong Y et al (2015) The value of nonenhanced single-source dual-energy CT for differentiating metastases from adenoma in adrenal glands. Acad Radiol 22:834–839

    Article  PubMed  Google Scholar 

  29. Forghani R, Kelly H, Yu E et al (2017) Low-energy virtual monochromatic dual-energy computed tomography images for the evaluation of head and neck squamous cell carcinoma: a study of tumor visibility compared with single-energy computed tomography and user acceptance. J Comput Assist Tomogr 41:565–571

    Article  PubMed  Google Scholar 

  30. Bodanapally UK, Dreizin D, Issa G, Archer-Arroyo KL, Sudini K, Fleiter TR (2017) Dual-energy CT in enhancing subdural effusions that masquerade as subdural hematomas: diagnosis with virtual high-monochromatic (190-keV) images. AJNR Am J Neuroradiol 38:1946–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang Y, Cheng J, Hua X et al (2016) Can spectral CT imaging improve the differentiation between malignant and benign solitary pulmonary nodules? PLoS One 11:e147537

    Google Scholar 

  32. Kim JE, Kim HO, Bae K, Cho JM, Choi HC, Choi DS (2017) Differentiation of small intrahepatic mass-forming cholangiocarcinoma from small liver abscess by dual source dual-energy CT quantitative parameters. Eur J Radiol 92:145–152

    Article  PubMed  Google Scholar 

  33. Furuya M, Yonemitsu Y (2008) Cancer neovascularization and proinflammatory microenvironments. Curr Cancer Drug Targets 8:253–265

    Article  CAS  PubMed  Google Scholar 

  34. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  CAS  PubMed  Google Scholar 

  35. Sumi M, Nakamura T (2013) Head and neck tumors: assessment of perfusion-related parameters and diffusion coefficients based on the intravoxel incoherent motion model. AJNR Am J Neuroradiol 34:410–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Forghani R, De Man B, Gupta R (2017) Dual-energy computed tomography physical principles, approaches to scanning, physical principles, approaches to scanning, usage, and implementation: Part 2. Neuroimaging Clin N Am 27:385–400

    Article  PubMed  Google Scholar 

  37. Marin D, Boll DT, Mileto A, Nelson RC (2014) State of the art: dual-energy CT of the abdomen. Radiology 271:327–342

    Article  PubMed  Google Scholar 

  38. Koeller KK (2016) Radiologic features of sinonasal tumors. Head Neck Pathol 10:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sasaki M, Eida S, Sumi M, Nakamura T (2011) Apparent diffusion coefficient mapping for sinonasal diseases: differentiation of benign and malignant lesions. AJNR Am J Neuroradiol 32:1100–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. White ML, Zhang Y, Robinson RA (2006) Evaluating tumors and tumorlike lesions of the nasal cavity, the paranasal sinuses, and the adjacent skull base with diffusion-weighted MRI. J Comput Assist Tomogr 30:490–495

    Article  PubMed  Google Scholar 

  41. Wang F, Sha Y, Zhao M et al (2017) High-resolution diffusion-weighted imaging improves the diagnostic accuracy of dynamic contrast-enhanced sinonasal magnetic resonance imaging. J Comput Assist Tomogr 41:199–205

    Article  PubMed  Google Scholar 

  42. Aribandi M, McCoy VA, Bazan CR (2007) Imaging features of invasive and noninvasive fungal sinusitis: a review. Radiographics 27:1283–1296

    Article  PubMed  Google Scholar 

  43. Hagspiel KD, Flors L, Housseini AM et al (2012) Pulmonary blood volume imaging with dual-energy computed tomography: spectrum of findings. Clin Radiol 67:69–77

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Grant of Science and Technology Commission of Shanghai Municipality (No. 17411962100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuohua Tang.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Prof. Zuohua Tang, MD, PhD, Eye and ENT Hospital of Shanghai Medical School, Fudan University.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• diagnostic or prognostic study

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Tang, Z., Xiao, Z. et al. Dual-energy CT in differentiating benign sinonasal lesions from malignant ones: comparison with simulated single-energy CT, conventional MRI, and DWI. Eur Radiol 32, 1095–1105 (2022). https://doi.org/10.1007/s00330-021-08159-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-021-08159-3

Keywords

Navigation