Skip to main content

Advertisement

Log in

Optimized radiological alert thresholds based on device dosimetric information and peak skin dose in vascular fluoroscopically guided intervention

  • Vascular-Interventional
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

The National Council on Radiation Protection (NCRP) report no. 168 recommended that during fluoroscopically guided interventions (FGIs), each patient should be monitored when one of the following thresholds is reached: an air kerma > 5 Gy, a kerma area product (KAP) > 500 Gy.cm2, a fluoroscopy time > 60 min, or a peak skin dose (PSD) > 3 Gy. Whereas PSD is the most accurate metric regarding the prevention of radiological risks, it remains the most difficult parameter to assess. We aimed to evaluate the relevance of the other, more accessible metrics and propose new optimized threshold (OT) for improved patient follow-up.

Methods

Overall, 108 patients who underwent FGI in which at least one NCRP threshold was reached and PSD was measured were considered. The correlation between all metrics was assessed using principal component analysis (PCA). ROC curves and the sensitivity/specificity of both NCRP and OT to predict PSD > 3 Gy were evaluated.

Results

The PCA shows that FGI can be decomposed with two components based on time and dose variables. Only KAP and kerma were correlated with PSD. The overall sensitivity and specificity of the new OT regarding KAP (67.6/93.0), kerma (97.3/81.7), and time (62.2/62.0) were better compared with NCRP thresholds (97.3/16.9, 40.5/95.4, and 21.6/74.7).

Conclusions

This study shows that fluoroscopy time is not a relevant metric when used to predict PSDs > 3 Gy. By adapting KAP and kerma thresholds to predict PSD over 3 Gy, patient follow-ups following vascular FGI can be improved.

Key Points

In vascular fluoroscopically guided interventions, principal component analysis demonstrates that between fluoroscopy time, KAP, and kerma, only the two last were correlated to the peak skin dose.

Optimized thresholds replacing NRCP ones obtained with ROC curves analysis were 85,451 μGy.cm2, 2938 mGy, and 41 min for KAP, kerma, and fluoroscopy time respectively.

Improvements to trigger patient follow-up after vascular fluoroscopically guided interventions may be obtained by using the optimized thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACR:

American College of Radiology

AUC:

Area under the curve

CE:

Chemoembolization

DICOM:

Digital Imaging and Communications in Medicine

EM:

Embolization

FB:

Foreign body extraction

FGI:

Fluoroscopically guided intervention

FN:

False negative

FP:

False positive

KAP:

Kerma area product

KERMA:

Kinetic energy released per unit mass

NCRP:

National Council on Radiation Protection

NPV:

Negative predictive value

OT:

Optimized threshold

PC:

Principal component

PCA:

Principal component analysis

PPV:

Positive predictive value

PSD:

Peak skin dose

RDSR:

Radiation dose structured report

RE:

Recanalization

RVS:

Renal vein sampling

TIPS:

Transjugular intrahepatic portosystemic shunt

TN:

True negative

TP:

True positive

References

  1. Guesnier-Dopagne M, Boyer L, Pereira B, Guersen J, Motreff P, D’Incan M (2019) Incidence of chronic radiodermatitis after fluoroscopically guided interventions: a retrospective study. J Vasc Interv Radiol. https://doi.org/10.1016/j.jvir.2019.01.010

  2. National Council on Radiation Protection and Measurements (2011) Radiation dose management for fluoroscopically-guided interventional medical guided interventional medical procedures. NCRP Report No 168. https://doi.org/10.1118/1.4747450

  3. Wagner L, Eifel P, Geise R (1994) Potential biological effects following high X-ray dose interventional procedures. J Vasc Interv Radiol. https://doi.org/10.1016/S1051-0443(94)71456-1

  4. Stecker M, Balter S, Towbin R et al (2009) Guidelines for patient radiation dose management. J Vasc Interv Radiol. https://doi.org/10.1016/j.jvir.2009.04.037

  5. Balter S, Moses J (2007) Managing patient dose in interventional cardiology. Cath Cardiovasc Interv. https://doi.org/10.1002/ccd.21141

  6. Magnier F, Poulin M, Van Ngoc TC et al (2018) Comparison of patient skin dose evaluated using radiochromic film and dose calculation software. Cardiovasc Intervent Radiol. https://doi.org/10.1007/s00270-018-1888-1

  7. Greffier J, Van Ngoc Ty C, Bonniaud G et al (2017), Assessment of peak skin dose in interventional cardiology: a comparison between Gafchromic film and dosimetric software em.dose. Phys Med 38:16–22. https://doi.org/10.1016/j.ejmp.2017.05.044

  8. Greffier J, Grussenmeyer-Mary N, Larbi A et al (2019) Experimental evaluation of a radiation dose management system-integrated 3D skin dose map by comparison with XR-RV3 Gafchromic® films. Phys Med. https://doi.org/10.1016/j.ejmp.2019.09.234

  9. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Austria. Available via https://www.R-project.org/. Accessed 06 Aug 2018

  10. Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw. https://doi.org/10.18637/jss.v025.i01

  11. Robin X, Turck N, Hainard A et al (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. https://doi.org/10.1186/1471-2105-12-77

  12. Youden J (1950) Index for rating diagnostic tests. Cancer. https://doi.org/10.1002/1097-0142(1950)3:1%3C32::aid-cncr2820030106%3E3.0.co;2-3

  13. Habib Geryes B, Hadid-Beurrier L, Waryn MJ, Jean-Pierre A, Farah J (2018) Benchmarking the DACS-integrated radiation dose monitor® skin dose mapping software using XR-RV3 Gafchromic® films. Med Phys. https://doi.org/10.1002/mp.13125

  14. Didier R, Bourhis D, Oueslati C et al (2019) In vivo validation of Dosemap software use in interventional cardiology with dosimetrics indicators and peak skin dose evaluation. Catheter Cardiovasc Interv. https://doi.org/10.1002/ccd.28097

  15. American College of Radiology (2008) ACR technical standard for management of the use of radiation in fluoroscopic procedures, Practice Guidelines and Technical Standards. Available at https://acsjournals.onlinelibrary.wiley.com/doi/10.1002/1097-0142(1950)3:1%3C32::AID-CNCR2820030106%3E3.0.CO;2-3. Accessed 27 Oct 2020

  16. International Atomic Energy Agency (2010) Patient dose optimization in fluoroscopically guided interventional procedures IAEA TECDOC-1641. IAEA, Vienna

  17. Valentin J (2000) Avoidance of radiation injuries from medical interventional procedures: ICRP Publication 85. Annals of the ICRP. https://doi.org/10.1016/S0146-6453(01)00004-5

  18. Food and drug administration (1994) Important Information for Physicians and Other Healthcare Professionals: avoidance of serious X-ray-induced skin injuries to patients during fluoroscopically-guided procedures available at https://www.fda.gov/media/74894/download

  19. Jones A, Pasciak A (2011) Calculating the peak skin dose resulting fromfluoroscopically guided interventions. Part I: methods. J Appl Clin Med Phys. https://doi.org/10.1120/jacmp.v12i4.3670

  20. Balter S, Miller D, Vano E et al (2008) A pilot study exploring the possibility of establishing guidance levels in x-ray directed interventional procedures. Med Phys. https://doi.org/10.1118/1.2829868

  21. Fletcher D, Miller D, Balter S, Taylor M (2002) Comparison of four techniques to estimate radiation dose to skin during angiographic and interventional radiology procedures. Vasc Interv Radiol. https://doi.org/10.1016/S1051-0443(07)61742-4

  22. Miller D, Balter S, Cole P et al (2003) Radiation doses in interventional radiology procedures: the RAD-IR study: part II skin dose. J Vasc Interv Radiol. https://doi.org/10.1097/01.RVI.0000084601.43811.CB

  23. Balter S, Hopewell J, Miller D, Wagner L, Zelefsky M (2010) Fluoroscopically guided interventional procedures: a review of radiation effects on patients’ skin and hair. Radiology. https://doi.org/10.1148/radiol.2542082312

  24. Jones A, Ensor J, Pasciak A (2014) How accurately can the peak skin dose in fluoroscopy be determined using indirect dose metrics? Med Phys. https://doi.org/10.1118/1.4884020

  25. Miller D (2009) Interventional fluoroscopy: reducing radiation risks for patients and staff. JVIR. https://doi.org/10.1016/j.jvir.2009.04.057

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Sas.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Louis Boyer, Pôle Interhospitalier d’Imagerie Diagnostique et de Radiologie Interventionnelle.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was not required for this study because of its retrospective character and the analysis being based only on data acquired during clinical routine.

Ethical approval

Institutional Review Board approval was not required because this is a retrospective study and all data are anonymized. Thereby, no ethical approval is required.

Methodology

• retrospective

• cross-sectional study

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sas, N., Magnier, F., Pouget, E. et al. Optimized radiological alert thresholds based on device dosimetric information and peak skin dose in vascular fluoroscopically guided intervention. Eur Radiol 31, 3027–3034 (2021). https://doi.org/10.1007/s00330-020-07422-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-020-07422-3

Keywords

Navigation