Hofbauer LC, Rachner TD (2015) More DATA to guide sequential osteoporosis therapy. Lancet 386:1116–1118. https://doi.org/10.1016/S0140-6736(15)61175-8
Article
PubMed
Google Scholar
Pisani P, Renna MD, Conversano F et al (2016) Major osteoporotic fragility fractures: risk factor updates and societal impact. World J Orthop 7:171–181. https://doi.org/10.5312/wjo.v7.i3.171
Article
PubMed
PubMed Central
Google Scholar
Yang J, Pham SM, Crabbe DL (2003) Effects of oestrogen deficiency on rat mandibular and tibial microarchitecture. Dentomaxillofac Radiol 32:247–251. https://doi.org/10.1259/dmfr/12560890
CAS
Article
PubMed
Google Scholar
Watanabe M, Sakai D, Yamamoto Y, Sato M, Mochida J (2010) Upper cervical spine injuries: age-specific clinical features. J Orthop Sci 15:485–492. https://doi.org/10.1007/s00776-010-1493-x
Devlin HB, Goldman M (1966) Backache due to osteoporosis in an industrial population. A survey of 481 patients. Ir J Med Sci 6:141–148. https://doi.org/10.1007/bf02943677
CAS
Article
PubMed
Google Scholar
Ensrud KE, Blackwell TL, Cawthon PM et al (2016) Degree of trauma differs for major osteoporotic fracture events in older men versus older women. J Bone Miner Res 31:204–207. https://doi.org/10.1002/jbmr.2589
Article
PubMed
Google Scholar
Fechtenbaum J, Etcheto A, Kolta S, Feydy A, Roux C, Briot K (2016) Sagittal balance of the spine in patients with osteoporotic vertebral fractures. Osteoporos Int 27:559–567. https://doi.org/10.1007/s00198-015-3283-y
Yang Z, Griffith JF, Leung PC, Lee R (2009) Effect of osteoporosis on morphology and mobility of the lumbar spine. Spine (Phila Pa 1976) 34:E115–E121. https://doi.org/10.1097/brs.0b013e3181895aca
Lee JJ, Aghdassi E, Cheung AM et al (2012) Ten-year absolute fracture risk and hip bone strength in Canadian women with systemic lupus erythematosus. J Rheumatol 39(7):1378–1384. https://doi.org/10.3899/jrheum.111589
Article
PubMed
Google Scholar
Roski F, Hammel J, Mei K et al (2019) Bone mineral density measurements derived from dual-layer spectral CT enable opportunistic screening for osteoporosis. Eur Radiol 29(11):6355–6363. https://doi.org/10.1007/s00330-019-06263-z
Article
PubMed
PubMed Central
Google Scholar
Li GW, Tang GY, Liu Y, Tang RB, Peng YF, Li W (2012) MR spectroscopy and Micro-CT in evaluation of osteoporosis model in rabbits: comparison with histopathology. Eur Radiol 22:923–929. https://doi.org/10.1007/s00330-011-2325-x
Dyke JP, Aaron RK (2010) Noninvasive methods of measuring bone blood perfusion. Ann N Y Acad Sci 1192:95–102. https://doi.org/10.1111/j.1749-6632.2009.05376.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Ott SM (1991) Methods of determining bone mass. J Bone Miner Res 6:S71–S76. https://doi.org/10.1002/jbmr.5650061416
Article
PubMed
Google Scholar
Rand T, Seidl G, Kainberger F et al (1997) Impact of spinal degenerative changes on the evaluation of bone mineral density with dual energy X-ray absorptiometry (DXA). Calcif Tissue Int 60:430e3. https://doi.org/10.1007/s002239900258
Article
Google Scholar
Ito M, Hayashi K, Yamada M, Uetani M, Nakamura T (1993) Relationship of osteophytes to bone mineral density and spinal fracture in men. Radiology 189:497–502. https://doi.org/10.1148/radiology.189.2.8210380
Engelke K (2017) Quantitative computed tomography—current status and new developments. J Clin Densitom 20(3):309–321. https://doi.org/10.1016/j.jocd.2017.06.017
Article
PubMed
Google Scholar
Engelke K, Libanati C, Liu Y et al (2009) Quantitative computed tomography (QCT) of the forearm using general purpose spiral whole-body CT scanners: accuracy, precision and comparison with dual-energy X-ray absorptiometry (DXA). Bone 45(1):110e8. https://doi.org/10.1016/j.bone.2009.03.669
Article
Google Scholar
Li N, Li XM, Xu L, Sun WJ, Cheng XG, Tian W (2013) Comparison of QCT and DXA: osteoporosis detection rates in postmenopausal women. Int J Endocrinol 2013:1–5. https://doi.org/10.1155/2013/895474
Xiao-ming X, Na L, Li K et al (2019) Discordance in diagnosis of osteoporosis by quantitative computed tomography and dual-energy X-ray absorptiometry in Chinese elderly men. J Orthop Translat 18:59–64. https://doi.org/10.1016/j.jot.2018.11.003
Article
Google Scholar
Löffler MT, Jacob A, Valentinitsch A et al (2019) Improved prediction of incident vertebral fractures using opportunistic QCT compared to DXA. Eur Radiol 29:4980–4989. https://doi.org/10.1007/s00330-019-06018-w
Article
PubMed
PubMed Central
Google Scholar
Valentinitsch A, Trebeschi S, Kaesmacher J et al (2019) Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporos Int 30:1275–1285. https://doi.org/10.1007/s00198-019-04910-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Gausden EB, Nwachukwu BU, Schreiber JJ, Lorich DG, Lane JM (2017) Opportunistic use of CT imaging for osteoporosis screening and bone density assessment. J Bone Joint Surg 99:1580–1590. https://doi.org/10.2106/JBJS.16.00749
Feng-tan L, Dong L, Zhang Y-t (2013) Influence of tube voltage on CT attenuation, radiation dose, and image quality: phantom study. Chin J Radiol 47:458–461. https://doi.org/10.3760/cma.j.issn.1005-1201.2013.05.016
Article
Google Scholar
Wolterink JM, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Išgum I (2017) Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal 34:123–136. https://doi.org/10.1016/j.media.2016.04.004
Sirinukunwattana K, Ahmed Raza SE, Yee-Wah T, Snead DRJ, Cree IA, Rajpoot NM (2016) Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imaging 35:1196–1206. https://doi.org/10.1109/TMI.2016.2525803
Gulshan V, Peng L, Coram M et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316:2402–2410. https://doi.org/10.1001/jama.2016.17216
Article
PubMed
Google Scholar
Esteva A, Kuprel B, Novoa RA et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115–118. https://doi.org/10.1038/nature21056
CAS
Article
PubMed
Google Scholar
González G, Ash SY et al (2017) Disease staging and prognosis in smokers using deep learning in chest computed tomography. Am J Respir Crit Care Med 197:193–203. https://doi.org/10.1164/rccm.201705-0860OC
Article
Google Scholar
Lee S, Choe EK, Kang HY, Yoon JW, Kim HS (2019) The exploration of feature extraction and machine learning for predicting bone density from simple spine X-ray images in a Korean population. Skeletal Radiology pp 1–6. https://doi.org/10.1007/s00256-019-03342-6
Bergman Amitai O, Bar A, Toledano E et al (2017) Computing DEXA score from CT using Deep segmentation networks cascade. Available at: www.zebra-med.com/research-publications/computing-dexa-score-from-ctusing-deep-segmentation-networks-cascade/
Pan Y, Shi D, Wang H et al (2020) Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening. Eur Radiol 30(7):4107–4116. https://doi.org/10.1007/s00330-020-06679-y
Article
PubMed
PubMed Central
Google Scholar
Yasaka K, Akai H, Kunimatsu A, Kiryu S, Abe O (2020) Prediction of bone mineral density from computed tomography: application of deep learning with a convolutional neural network. Eur Radiol 30(6):3549–3557. https://doi.org/10.1007/s00330-020-06677-0
Wu Y, Guo Z, Fu X et al (2019) The study protocol for the China Health Big Data (China Biobank) project. Quant Imaging Med Surg 96:1095–1102. https://doi.org/10.21037/qims.2019.06.16
Article
Google Scholar
Link TM, Lang TF (2014) Axial QCT: clinical applications and new developments. J Clin Densitom 17:438–448. https://doi.org/10.1016/j.jocd.2014.04.119
Article
PubMed
Google Scholar
American College of Radiology (2018) ACR-SPR-SSR practice parameter for the performance of musculoskeletal quantitative computed tomography (QCT). American College of Radiology, Reston. Available at: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/QCT.pdf
Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, pp 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
Chapter
Google Scholar
Iandola F, Moskewicz M, Karayev S, Girshick R, Darrell T, Keutzer K (2014) Densenet: implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869
Russakovsky O, Deng J, Su H et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vision 115:211–252. https://doi.org/10.1007/s11263-015-0816-y
Article
Google Scholar