Diffusion and perfusion MRI may predict EGFR amplification and the TERT promoter mutation status of IDH-wildtype lower-grade gliomas

A Correction to this article was published on 10 September 2020

This article has been updated



Epidermal growth factor receptor (EGFR) amplification and telomerase reverse transcriptase promoter (TERTp) mutation status of isocitrate dehydrogenase-wildtype (IDHwt) lower-grade gliomas (LGGs; grade II/III) are crucial for identifying IDHwt LGG with an aggressive clinical course. The purpose of this study was to assess whether parameters from diffusion tensor imaging, dynamic susceptibility contrast (DSC), and diffusion tensor imaging, dynamic contrast-enhanced imaging can predict the EGFR amplification and TERTp mutation status of IDHwt LGGs.


A total of 49 patients with IDHwt LGGs with either known EGFR amplification (39 non-amplified, 10 amplified) or TERTp mutation (19 wildtype, 21 mutant) statuses underwent MRI. The mean ADC, fractional anisotropy (FA), normalized cerebral blood volume (nCBV), normalized cerebral blood flow (nCBF), volume transfer constant (Ktrans), rate transfer coefficient (Kep), extravascular extracellular volume fraction (Ve), and plasma volume fraction (Vp) values were assessed. Univariate and multivariate logistic regression models were constructed.


EGFR-amplified tumors showed lower mean ADC values than EGFR-non-amplified tumors (p = 0.019). Mean ADC was an independent predictor of EGFR amplification, with an AUC of 0.75. TERTp mutant tumors showed higher mean nCBV (p = 0.020), higher mean nCBF (p = 0.017), and higher mean Vp (p = 0.002) than TERTp wildtype tumors. With multivariate logistic regression, mean Vp was the independent predictor of TERTp mutation status, with an AUC of 0.85.


This exploratory pilot study shows that lower ADC values may be useful for prediction of EGFR amplification, whereas higher Vp values may be useful for prediction of the TERTp mutation status of IDHwt LGGs.

Key Points

EGFR amplification and TERTp mutation are key molecular markers that predict an aggressive clinical course of IDHwt LGGs.

EGFR-amplified tumors showed lower ADC values than EGFR-non-amplified tumors, suggesting higher cellularity.

TERTp mutant tumors showed a higher plasma volume fraction than TERTp wildtype tumors, suggesting higher vascular proliferation and tumor angiogenesis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Change history



Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy


Cerebral blood volume


Dynamic contast-enhanced


Dynamic susceptibility contrast


Diffusion tensor imaging


Epidermal growth factor receptor


Fractional anisotropy


Fluid-attenuated inversion recovery


Field of view


Isocitrate dehydrogenase



K ep :

Rate transfer coefficient

K trans :

Volume transfer constant


Lower-grade glioma


Normalized cerebral blood volume


Normalized cerebral blood flow


Echo time


Telomerase reverse transcriptase promoter


Repetition time

V e :

Extravascular extracellular volume fraction


Variance inflation factor

V p :

Plasma volume fraction


World Health Organization


  1. 1.

    Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Google Scholar 

  2. 2.

    Brat DJ, Verhaak RG, Aldape KD et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498

    CAS  Google Scholar 

  3. 3.

    Eckel-Passow JE, Lachance DH, Molinaro AM et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508

    CAS  PubMed Central  Google Scholar 

  4. 4.

    Wijnenga MM, Dubbink HJ, French PJ et al (2017) Molecular and clinical heterogeneity of adult diffuse low-grade IDH wild-type gliomas: assessment of TERT promoter mutation and chromosome 7 and 10 copy number status allows superior prognostic stratification. Acta Neuropathol 134:957–959

    CAS  Google Scholar 

  5. 5.

    Weller M, Weber RG, Willscher E et al (2015) Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome-and transcriptome-wide profiling improves stratification of prognostically distinct patient groups. Acta Neuropathol 129:679–693

    CAS  Google Scholar 

  6. 6.

    Brat DJ, Aldape K, Colman H et al (2018) cIMPACT-NOW update 3: recommended diagnostic criteria for “diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol 136:805–810

    CAS  PubMed Central  Google Scholar 

  7. 7.

    Bai J, Varghese J, Jain R (2020) Adult glioma WHO classification update, genomics, and imaging: what the radiologists need to know. Top Magn Reson Imaging 29:71–82

    Google Scholar 

  8. 8.

    Chen J, McKay RM, Parada LF (2012) Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 149:36–47

    CAS  PubMed Central  Google Scholar 

  9. 9.

    Arita H, Narita Y, Fukushima S et al (2013) Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss. Acta Neuropathol 126:267–276

    CAS  Google Scholar 

  10. 10.

    Kim DH, Mohapatra G, Bollen A, Waldman FM, Feuerstein BG (1995) Chromosomal abnormalities in glioblastoma multiforme tumors and glioma cell lines detected by comparative genomic hybridization. Int J Cancer 60:812–819

    CAS  Google Scholar 

  11. 11.

    Choi Y, Ahn S, Lee H-J et al (2017) The initial area under the curve derived from dynamic contrast-enhanced MRI improves prognosis prediction in glioblastoma with unmethylated MGMT promoter. AJNR Am J Neuroradiol 38:1528–1535

  12. 12.

    Ahn SS, Shin N-Y, Chang JH et al (2014) Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging. J Neurosurg 121:367–373

    Google Scholar 

  13. 13.

    Choi Y, Kim D, Lee S-K et al (2015) The added prognostic value of preoperative dynamic contrast-enhanced MRI histogram analysis in patients with glioblastoma: analysis of overall and progression-free survival. AJNR Am J Neuroradiol 36:2235–2241

    CAS  Google Scholar 

  14. 14.

    Chenevert TL, Brunberg JA, Pipe JG (1990) Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology 177:401–405

    CAS  Google Scholar 

  15. 15.

    Hansen JR (1971) Pulsed NMR study of water mobility in muscle and brain tissue. Biochim Biophys Acta 230:482–486

    CAS  Google Scholar 

  16. 16.

    Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    CAS  PubMed Central  Google Scholar 

  17. 17.

    Takano S, Tian W, Matsuda M et al (2011) Detection of IDH1 mutation in human gliomas: comparison of immunohistochemistry and sequencing. Brain Tumor Pathol 28:115–123

    CAS  Google Scholar 

  18. 18.

    Sahm F, Schrimpf D, Jones DT et al (2016) Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol 131:903–910

    CAS  Google Scholar 

  19. 19.

    Na K, Kim H-S, Shim HS, Chang JH, Kang S-G, Kim SH (2019) Targeted next-generation sequencing panel (TruSight Tumor 170) in diffuse glioma: a single institutional experience of 135 cases. J Neurooncol 142:445–454

    CAS  PubMed Central  Google Scholar 

  20. 20.

    Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magnet Reson Imaging 10:223–232

    CAS  Google Scholar 

  21. 21.

    Weisskoff R, Boxerman J, Sorensen A, Kulke S, Campbell T, Rosen B (1994) Simultaneous blood volume and permeability mapping using a single Gd-based contrast injection. Proceedings of the Society of Magnetic Resonance, Second Annual Meeting, pp 6–12

  22. 22.

    Boxerman J, Schmainda K, Weisskoff R (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 27:859–867

    CAS  Google Scholar 

  23. 23.

    Cha J, Kim S, Kim H-J et al (2014) Differentiation of tumor progression from pseudoprogression in patients with posttreatment glioblastoma using multiparametric histogram analysis. AJNR Am J Neuroradiol 35:1309–1317

    CAS  Google Scholar 

  24. 24.

    Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16:187–198

    CAS  Google Scholar 

  25. 25.

    Aibaidula A, Chan AK-Y, Shi Z et al (2017) Adult IDH wild-type lower-grade gliomas should be further stratified. Neuro Oncology 19:1327–1337

    CAS  PubMed Central  Google Scholar 

  26. 26.

    Park YW, Han K, Ahn SS et al (2018) Prediction of IDH1-mutation and 1p/19q-codeletion status using preoperative MR imaging phenotypes in lower grade gliomas. AJNR Am J Neuroradiol 39:37–42

    CAS  PubMed Central  Google Scholar 

  27. 27.

    Park YW, Han K, Ahn SS et al (2018) Whole-tumor histogram and texture analyses of DTI for evaluation of IDH1-mutation and 1p/19q-codeletion status in World Health Organization grade II gliomas. AJNR Am J Neuroradiol 39:693–698

    CAS  PubMed Central  Google Scholar 

  28. 28.

    Park CJ, Choi YS, Park YW et al (2020) Diffusion tensor imaging radiomics in lower-grade glioma: improving subtyping of isocitrate dehydrogenase mutation status. Neuroradiology 62(3):319–326

  29. 29.

    Park YW, Choi YS, Ahn SS, Chang JH, Kim SH, Lee S-K (2019) Radiomics MRI phenotyping with machine learning to predict the grade of lower-grade gliomas: a study focused on nonenhancing tumors. Korean J Radiol 20:1381–1389

    PubMed Central  Google Scholar 

  30. 30.

    Li Y, Liu X, Xu K et al (2018) MRI features can predict EGFR expression in lower grade gliomas: a voxel-based radiomic analysis. Eur Radiol 28:356–362

    Google Scholar 

  31. 31.

    Young RJ, Gupta A, Shah A et al (2013) Potential role of preoperative conventional MRI including diffusion measurements in assessing epidermal growth factor receptor gene amplification status in patients with glioblastoma. AJNR Am J Neuroradiol 34:2271–2277

    CAS  PubMed Central  Google Scholar 

  32. 32.

    Lal A, Glazer CA, Martinson HM et al (2002) Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. Cancer Res 62:3335–3339

    CAS  Google Scholar 

  33. 33.

    Gupta A, Young R, Shah A et al (2015) Pretreatment dynamic susceptibility contrast MRI perfusion in glioblastoma: prediction of EGFR gene amplification. Clin Neuroradiol 25:143–150

    CAS  Google Scholar 

  34. 34.

    Tykocinski ES, Grant RA, Kapoor GS et al (2012) Use of magnetic perfusion-weighted imaging to determine epidermal growth factor receptor variant III expression in glioblastoma. Neuro Oncology 14:613–623

    CAS  PubMed Central  Google Scholar 

  35. 35.

    Kickingereder P, Bonekamp D, Nowosielski M et al (2016) Radiogenomics of glioblastoma: machine learning–based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology 281:907–918

    Google Scholar 

  36. 36.

    Arevalo-Perez J, Thomas A, Kaley T et al (2015) T1-weighted dynamic contrast-enhanced MRI as a noninvasive biomarker of epidermal growth factor receptor vIII status. AJNR Am J Neuroradiol 36:2256–2261

    CAS  PubMed Central  Google Scholar 

  37. 37.

    Keller S, Schmidt M (2017) EGFR and EGFRvIII promote angiogenesis and cell invasion in glioblastoma: combination therapies for an effective treatment. Int J Mol Sci 18:1295

    Google Scholar 

  38. 38.

    Dunn IF, Heese O, Black PM (2000) Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J Neurooncol 50:121–137

    CAS  Google Scholar 

  39. 39.

    Labussiere M, Di Stefano A, Gleize V et al (2014) TERT promoter mutations in gliomas, genetic associations and clinico-pathological correlations. Br J Cancer 111:2024

    CAS  PubMed Central  Google Scholar 

  40. 40.

    Takahashi M, Miki S, Fukuoka K et al (2017) EXTH-50. Development of investigator initiated clinical trial of TERT-targeting therapy using eribulin mesylate in patients with recurrent glioblastoma. Neuro Oncology 19:vi83

    Google Scholar 

  41. 41.

    Ersoy TF, Keil VC, Hadizadeh DR et al (2017) New prognostic factor telomerase reverse transcriptase promotor mutation presents without MR imaging biomarkers in primary glioblastoma. Neuroradiology 59:1223–1231

    Google Scholar 

  42. 42.

    Yamashita K, Hatae R, Hiwatashi A et al (2019) Predicting TERT promoter mutation using MR images in patients with wild-type IDH1 glioblastoma. Diagn Interv Imaging 100(7–8):411–419

    CAS  Google Scholar 

  43. 43.

    Ivanidze J, Lum M, Pisapia D et al (2019) MRI features associated with TERT promoter mutation status in glioblastoma. J Neuroimaging 29:357–363

    Google Scholar 

  44. 44.

    Low KC, Tergaonkar V (2013) Telomerase: central regulator of all of the hallmarks of cancer. Trends Biochem Sci 38:426–434

    CAS  Google Scholar 

  45. 45.

    Pallini R, Pierconti F, Falchetti ML et al (2001) Evidence for telomerase involvement in the angiogenesis of astrocytic tumors: expression of human telomerase reverse transcriptase messenger RNA by vascular endothelial cells. J Neurosurg 94:961–971

    CAS  Google Scholar 

  46. 46.

    Nguyen T, Cron G, Mercier J et al (2015) Preoperative prognostic value of dynamic contrast-enhanced MRI–derived contrast transfer coefficient and plasma volume in patients with cerebral gliomas. AJNR Am J Neuroradiol 36:63–69

    CAS  Google Scholar 

  47. 47.

    Larsson HB, Hansen AE, Berg HK, Rostrup E, Haraldseth O (2008) Dynamic contrast-enhanced quantitative perfusion measurement of the brain using T1-weighted MRI at 3T. J Magn Reson Imaging 27:754–762

    Google Scholar 

  48. 48.

    Alcaide-Leon P, Pareto D, Martinez-Saez E, Auger C, Bharatha A, Rovira A (2015) Pixel-by-pixel comparison of volume transfer constant and estimates of cerebral blood volume from dynamic contrast-enhanced and dynamic susceptibility contrast-enhanced MR imaging in high-grade gliomas. AJNR Am J Neuroradiol 36:871–876

    CAS  Google Scholar 

  49. 49.

    Stichel D, Ebrahimi A, Reuss D et al (2018) Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma. Acta Neuropathol 136:793–803

    Google Scholar 

Download references


This research received funding from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2017R1D1A1B03030440), and from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A1A0107164811).

Author information



Corresponding author

Correspondence to Sung Soo Ahn.

Ethics declarations


The scientific guarantor of this publication is Professor Seung-Koo Lee, MD, PhD, from Yonsei University College of Medicine (slee@yuhs.ac).

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise (K.H, a biostatistician with 10 years of experience in biostatistics).

Informed consent

Only if the study is on human subjects: The institutional review board waived the requirement to obtain informed patient consent for this retrospective study.

Only if the study is on animals: This study was performed only on human subjects.

Ethical approval

Institutional Review Board approval was obtained.


• retrospective

• diagnostic or prognostic study

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 17.3 kb)

Electronic supplementary material

Below is the link to the electronic supplementary material.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, Y.W., Ahn, S.S., Park, C.J. et al. Diffusion and perfusion MRI may predict EGFR amplification and the TERT promoter mutation status of IDH-wildtype lower-grade gliomas. Eur Radiol 30, 6475–6484 (2020). https://doi.org/10.1007/s00330-020-07090-3

Download citation


  • Epidermal growth factor receptor
  • Genomics
  • Glioma
  • Magnetic resonance imaging
  • Telomerase reverse transcriptase