Fitzmaurice C, Allen C, Barber RM et al (2017) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the Global Burden of Disease study. JAMA Oncol 3:524–548. https://doi.org/10.1001/jamaoncol.2016.5688
Article
PubMed
Google Scholar
Aberle DR, Adams AM, Berg CD et al (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365:395–409
Article
Google Scholar
Church TR, Black WC, Aberle DR et al (2013) Results of initial low-dose computed tomographic screening for lung cancer. N Engl J Med 368:1980–1991. https://doi.org/10.1056/NEJMoa1209120
CAS
Article
PubMed
Google Scholar
Bach PB, Mirkin JN, Oliver TK et al (2012) Benefits and harms of CT screening for lung cancer: a systematic review. JAMA 307:2418–2429. https://doi.org/10.1001/jama.2012.5521
CAS
Article
PubMed
PubMed Central
Google Scholar
Terzi A, Bertolaccini L, Viti A et al (2013) Lung cancer detection with digital chest tomosynthesis: baseline results from the observational study SOS. J Thorac Oncol 8:685–692. https://doi.org/10.1097/JTO.0b013e318292bdef
Article
PubMed
Google Scholar
Grosso M, Priotto R, Ghirardo D et al (2017) Comparison of digital tomosynthesis and computed tomography for lung nodule detection in SOS screening program. Radiol Med 122:568–574. https://doi.org/10.1007/s11547-017-0765-3
Article
PubMed
Google Scholar
McKee BJ, McKee AB, French R et al (2012) “Lung-RADS” a proposed standardized reporting and data system for CT lung cancer screening. J Thorac Oncol 4:S277–S278
Google Scholar
MacMahon H, Austin JHM, Gamsu G et al (2005) Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology 237:395–400
Article
Google Scholar
Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D (2017) Characterization of PET/CT images using texture analysis: the past, the present … any future ? Eur J Nucl Med Mol Imaging 44:151–165. https://doi.org/10.1007/s00259-016-3427-0
Haralick RM, Dinstein I, Shanmugam K (1973) Textural features for image classification. IEEE Trans Syst Man Cybern. https://doi.org/10.1109/TSMC.1973.4309314
Menardi G, Torelli N (2014) Training and assessing classification rules with imbalanced data. Data Min Knowl Disc. https://doi.org/10.1007/s10618-012-0295-5
Kendall MG (1945) The treatment of ties in ranking problems. Biometrika 33:239–251. https://doi.org/10.1093/biomet/33.3.239
CAS
Article
PubMed
Google Scholar
Moons KGM, Altman DG, Reitsma JB et al (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 162:W1–W73. https://doi.org/10.7326/M14-0698
Article
PubMed
Google Scholar
Kim JH, Lee KH, Kim KT et al (2016) Comparison of digital tomosynthesis and chest radiography for the detection of pulmonary nodules: systematic review and meta-analysis. Br J Radiol 89. https://doi.org/10.1259/bjr.20160421
Pinsky PF, Gierada DS, Black W et al (2015) Performance of lung-RADS in the national lung screening trial: a retrospective assessment. Ann Intern Med 162:485–491. https://doi.org/10.7326/M14-2086
Al Mohammad B, Brennan PC, Mello-Thoms C (2017) A review of lung cancer screening and the role of computer-aided detection. Clin Radiol 72:433–442. https://doi.org/10.1016/j.crad.2017.01.002
Article
PubMed
Google Scholar
Wang J, Dobbins JT 3rd, Li Q (2012) Automated lung segmentation in digital chest tomosynthesis. Med Phys 39:732–741. https://doi.org/10.1118/1.3671939
Hadházi D, Varga R, Horváth A, Czétényi B, Horváth G (2015) Digital chest tomosynthesis: the main steps to a computer assisted lung diagnostic system. In: 2015 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2015 - Proceedings. pp 40–45
Horváth Á, Wolf P, Nagy J et al (2016) Overview of a digital tomosynthesis development: new approaches for low-dose chest imaging. Radiat Prot Dosimetry 169:171–176. https://doi.org/10.1093/rpd/ncv469
Article
PubMed
Google Scholar
Balagurunathan Y, Schabath MB, Wang H, Liu Y, Gillies RJ (2019) Quantitative imaging features improve discrimination of malignancy in pulmonary nodules. Sci Rep 9:1–14. https://doi.org/10.1038/s41598-019-44562-z
Lu H, Mu W, Balagurunathan Y et al (2019) Multi-window CT based Radiomic signatures in differentiating indolent versus aggressive lung cancers in the National Lung Screening Trial: a retrospective study. Cancer Imaging:19. https://doi.org/10.1186/s40644-019-0232-6
Wu W, Pierce LA, Zhang Y et al (2019) Comparison of prediction models with radiological semantic features and radiomics in lung cancer diagnosis of the pulmonary nodules: a case-control study. Eur Radiol. https://doi.org/10.1007/s00330-019-06213-9