Skip to main content

Advertisement

Log in

Pseudo-continuous arterial spin labelling shows high diagnostic performance in the detection of postoperative residual lesion in hyper-vascularised adult brain tumours

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Our aim was to evaluate the contribution of pseudo-continuous arterial spin labelling (pCASL) in the detection of a postoperative residual lesion in adult brain tumours.

Methods

Seventy-five patients were prospectively included. Following the results of preoperative DSC-PWI assessment, intra-axial lesions, including high-grade gliomas (n = 43) and certain metastases (n = 14), were classified as hyper-vascular (HV+ group, n = 57); other lesions, including low-grade gliomas and certain metastases, were classified as non-hyper-vascular (HV− group, n = 18). To confirm the absence/presence of a residual lesion or disease progression, postoperative MRI including pCASL sequence and follow-up-MRI were performed within 72 h and 1–6 months after the resection, respectively. Two raters evaluated the images. Mean and maximal ASL cerebral blood flow (CBF) values were measured in the perioperative region and normalised to the contralateral tissue. The pCASL-CBF maps and post-contrast T1WI were visually assessed for residual lesion. Quantitative data were analysed with unpaired Student t and Mann-Whitney U tests and the visual diagnostic performance with the McNemar test.

Results

In the HV+ group, the mean normalised CBF was 1.97 ± 0.59 and 0.97 ± 0.29 (p < 0.0001, AUC = 0.964, cut-off = 1.27) for patients with or without residual tumours, respectively. The mean normalised CBF was not discriminative for assessing residual tumours in the HV− group (p = 0.454). Visual CBF evaluation allowed 92.98% patients belonging to the HV+ group to be correctly classified (sensitivity 93.02%, specificity 92.86%, p < 0.001). Visual evaluation was correlated with contrast enhancement evaluation and with the mean normalised CBF values (r = 0.505, p < 0.0001 and 0.838, p < 0.0001, respectively).

Conclusion

Qualitative and quantitative ASL evaluation shows high diagnostic performance in postoperative assessment of hyper-perfused tumours. In this case, postoperative pCASL may be useful, especially if contrast injection cannot be performed or when contrast enhancement is doubtful.

Key Points

• Evaluation of postoperative residual lesion in the case of brain tumours is an imaging challenge.

• This prospective monocentric study showed that increased normalised cerebral blood flow assessed by pseudo-continuous arterial spin labelling (pCASL) correlates well with the presence of a residual tumour in the case of hyper-vascular tumour diagnosed on preoperative MRI.

• Qualitative and quantitative pCASL is an informative sequence for hyper-vascular residual tumour, especially if acquired more than 48 h after brain tumour surgery, when contrast enhancement can give ambiguous results due to blood-brain barrier disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6

Similar content being viewed by others

Abbreviations

CBF:

Cerebral blood flow

CE-T1WI:

Contrast-enhanced T1-weighted imaging

CInd:

Confidence index

maxrCBF:

Normalised ratio for the maximal CBF values

meanrCBF:

Normalised ratio for the mean CBF values

PRL:

Postoperative residual lesion

visualCBF:

Visually assessed CBF

References

  1. Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre JY (2012) Primary brain tumours in adults. Lancet 379:1984–1996. https://doi.org/10.1016/S0140-6736(11)61346-9

  2. Cagney DN, Martin AM, Catalano PJ et al (2017) Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: a population-based study. Neuro Oncol 19:1511–1521. https://doi.org/10.1093/neuonc/nox077

    Article  PubMed  PubMed Central  Google Scholar 

  3. Villanueva-Meyer JE, Mabray MC, Cha S (2017) Current clinical brain tumor imaging. Neurosurgery 81:397–415. https://doi.org/10.1093/neuros/nyx103

    Article  PubMed  PubMed Central  Google Scholar 

  4. Weber MA, Zoubaa S, Schlieter M et al (2006) Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Cancer Imaging 6:S32–S41. https://doi.org/10.1102/1470-7330.2006.9096

    Article  PubMed Central  Google Scholar 

  5. Abrigo JM, Fountain DM, Provenzale JM et al (2018) Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation. Cochrane Database Syst Rev 1:CD011551. https://doi.org/10.1002/14651858.CD011551.pub2

    Article  PubMed  Google Scholar 

  6. Heo YJ, Kim HS, Park JE, Choi CG, Kim SJ (2015) Uninterpretable dynamic susceptibility contrast-enhanced perfusion MR images in patients with post-treatment glioblastomas: Cross-Validation of Alternative Imaging Options. PLoS One 10. https://doi.org/10.1371/journal.pone.0136380

  7. Detre JA, Alsop DC (1999) Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system. Eur J Radiol 30:115–124

    Article  CAS  Google Scholar 

  8. Järnum H, Steffensen EG, Knutsson L et al (2010) Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging. Neuroradiology 52:307–317. https://doi.org/10.1007/s00234-009-0616-6

    Article  PubMed  Google Scholar 

  9. White CM, Pope WB, Zaw T et al (2014) Regional and voxel-wise comparisons of blood flow measurements between dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and arterial spin labeling (ASL) in brain tumors. J Neuroimaging 24:23–30. https://doi.org/10.1111/j.1552-6569.2012.00703.x

    Article  PubMed  Google Scholar 

  10. van Westen D, Petersen ET, Wirestam R et al (2011) Correlation between arterial blood volume obtained by arterial spin labelling and cerebral blood volume in intracranial tumours. MAGMA 24:211–223. https://doi.org/10.1007/s10334-011-0255-x

    Article  PubMed  Google Scholar 

  11. Noguchi T, Nishihara M, Egashira Y et al (2015) Arterial spin-labeling MR imaging of cerebral hemorrhages. Neuroradiology 57:1135–1144. https://doi.org/10.1007/s00234-015-1574-9

    Article  PubMed  Google Scholar 

  12. Brown TJ, Brennan MC, Li M et al (2016) Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol 2:1460–1469. https://doi.org/10.1001/jamaoncol.2016.1373

    Article  PubMed  PubMed Central  Google Scholar 

  13. Awad A-W, Karsy M, Sanai N et al (2017) Impact of removed tumor volume and location on patient outcome in glioblastoma. J Neurooncol 135:161–171. https://doi.org/10.1007/s11060-017-2562-1

    Article  PubMed  Google Scholar 

  14. Lee C-H, Kim DG, Kim JW et al (2013) The role of surgical resection in the management of brain metastasis: a 17-year longitudinal study. Acta Neurochir (Wien) 155:389–397. https://doi.org/10.1007/s00701-013-1619-y

    Article  Google Scholar 

  15. Thust SC, Heiland S, Falini A et al (2018) Glioma imaging in Europe: a survey of 220 centres and recommendations for best clinical practice. Eur Radiol. https://doi.org/10.1007/s00330-018-5314-5

  16. Viken HH, Iversen IA, Jakola A, Sagberg LM, Solheim O (2018) When are complications after brain tumor surgery detected? World Neurosurg 112:e702–e710. https://doi.org/10.1016/j.wneu.2018.01.137

  17. Kamp MA, Rapp M, Bühner J et al (2015) Early postoperative magnet resonance tomography after resection of cerebral metastases. Acta Neurochir (Wien) 157:1573–1580. https://doi.org/10.1007/s00701-015-2479-4

    Article  Google Scholar 

  18. Grade M, Hernandez Tamames JA, Pizzini FB, Achten E, Golay X, Smits M (2015) A neuroradiologist’s guide to arterial spin labeling MRI in clinical practice. Neuroradiology 57:1181–1202. https://doi.org/10.1007/s00234-015-1571-z

  19. Sunwoo L, Yun TJ, You S-H et al (2016) Differentiation of glioblastoma from brain metastasis: qualitative and quantitative analysis using arterial spin labeling MR imaging. PLoS One 11:e0166662. https://doi.org/10.1371/journal.pone.0166662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chawla S, Wang S, Wolf RL et al (2007) Arterial spin-labeling and MR spectroscopy in the differentiation of gliomas. AJNR Am J Neuroradiol 28:1683–1689. https://doi.org/10.3174/ajnr.A0673

    Article  CAS  PubMed  Google Scholar 

  21. Choi YJ, Kim HS, Jahng GH, Kim SJ, Suh DC (2013) Pseudoprogression in patients with glioblastoma: added value of arterial spin labeling to dynamic susceptibility contrast perfusion MR imaging. Acta Radiol 54:448–454. https://doi.org/10.1177/0284185112474916

  22. Lindner T, Ahmeti H, Juhasz J et al (2018) A comparison of arterial spin labeling and dynamic susceptibility perfusion imaging for resection control in glioblastoma surgery. Oncotarget 9:18570–18577. https://doi.org/10.18632/oncotarget.24970

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lindner T, Ahmeti H, Lübbing I et al (2017) Intraoperative resection control using arterial spin labeling - proof of concept, reproducibility of data and initial results. Neuroimage Clin 15:136–142. https://doi.org/10.1016/j.nicl.2017.04.021

    Article  PubMed  PubMed Central  Google Scholar 

  24. Neska-Matuszewska M, Bladowska J, Sąsiadek M, Zimny A (2018) Differentiation of glioblastoma multiforme, metastases and primary central nervous system lymphomas using multiparametric perfusion and diffusion MR imaging of a tumor core and a peritumoral zone—Searching for a practical approach. PLoS One 13. https://doi.org/10.1371/journal.pone.0191341

  25. Sugahara T, Korogi Y, Kochi M et al (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 171:1479–1486. https://doi.org/10.2214/ajr.171.6.9843274

    Article  CAS  PubMed  Google Scholar 

  26. Welker K, Boxerman J, Kalnin A et al (2015) ASFNR recommendations for clinical performance of mr dynamic susceptibility contrast perfusion imaging of the brain. AJNR Am J Neuroradiol 36:E41–E51. https://doi.org/10.3174/ajnr.A4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rollin N, Guyotat J, Streichenberger N, Honnorat J, Tran Minh VA, Cotton F (2006) Clinical relevance of diffusion and perfusion magnetic resonance imaging in assessing intra-axial brain tumors. Neuroradiology 48:150–159. https://doi.org/10.1007/s00234-005-0030-7

  28. Boxerman JL, Shiroishi MS, Ellingson BM, Pope WB (2016) Dynamic susceptibility contrast mr imaging in glioma: review of current clinical practice. Magn Reson Imaging Clin N Am 24:649–670. https://doi.org/10.1016/j.mric.2016.06.005

    Article  PubMed  Google Scholar 

  29. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  30. You S-H, Yun TJ, Choi HJ et al (2018) Differentiation between primary CNS lymphoma and glioblastoma: qualitative and quantitative analysis using arterial spin labeling MR imaging. Eur Radiol. https://doi.org/10.1007/s00330-018-5359-5

  31. Zeng Q, Jiang B, Shi F, Ling C, Dong F, Zhang J (2017) 3D Pseudocontinuous arterial spin-labeling MR imaging in the preoperative evaluation of gliomas. AJNR Am J Neuroradiol 38:1876–1883. https://doi.org/10.3174/ajnr.A5299

  32. Liu Z-C, Yan L-F, Hu Y-C et al (2017) Combination of IVIM-DWI and 3D-ASL for differentiating true progression from pseudoprogression of glioblastoma multiforme after concurrent chemoradiotherapy: study protocol of a prospective diagnostic trial. BMC Med Imaging 17:10. https://doi.org/10.1186/s12880-017-0183-y

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ye J, Bhagat SK, Li H et al (2016) Differentiation between recurrent gliomas and radiation necrosis using arterial spin labeling perfusion imaging. Exp Ther Med 11:2432–2436. https://doi.org/10.3892/etm.2016.3225

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ata ES, Turgut M, Eraslan C, Dayanır YÖ (2016) Comparison between dynamic susceptibility contrast magnetic resonance imaging and arterial spin labeling techniques in distinguishing malignant from benign brain tumors. Eur J Radiol 85:1545–1553. https://doi.org/10.1016/j.ejrad.2016.05.015

    Article  PubMed  Google Scholar 

  35. Qiao XJ, Kim HG, Wang DJJ et al (2017) Application of arterial spin labeling perfusion MRI to differentiate benign from malignant intracranial meningiomas. Eur J Radiol 97:31–36. https://doi.org/10.1016/j.ejrad.2017.10.005

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kikuchi K, Hiwatashi A, Togao O et al (2018) Arterial spin-labeling is useful for the diagnosis of residual or recurrent meningiomas. Eur Radiol. https://doi.org/10.1007/s00330-018-5404-4

  37. Grabowski MM, Recinos PF, Nowacki AS et al (2014) Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma. J Neurosurg 121:1115–1123. https://doi.org/10.3171/2014.7.JNS132449

    Article  PubMed  Google Scholar 

  38. Villanueva-Meyer JE, Han SJ, Cha S, Butowski NA (2017) Early tumor growth between initial resection and radiotherapy of glioblastoma: incidence and impact on clinical outcomes. J Neurooncol 134:213–219. https://doi.org/10.1007/s11060-017-2511-z

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fox BD, Cheung VJ, Patel, Suki D, Rao G (2011) Epidemiology of metastatic brain tumors. Neurosurg Clin N Am 22:1–6, v. https://doi.org/10.1016/j.nec.2010.08.007

  40. Chaichana KL, McGirt MJ, Laterra J, Olivi A, Quiñones-Hinojosa A (2010) Recurrence and malignant degeneration after resection of adult hemispheric low-grade gliomas. J Neurosurg 112:10–17. https://doi.org/10.3171/2008.10.JNS08608

  41. Benveniste RJ, Ferraro N, Tsimpas A (2014) Yield and utility of routine postoperative imaging after resection of brain metastases. J Neurooncol 118:363–367. https://doi.org/10.1007/s11060-014-1440-3

    Article  PubMed  Google Scholar 

  42. Belhawi SMK, Hoefnagels FWA, Baaijen JC et al (2011) Early postoperative MRI overestimates residual tumour after resection of gliomas with no or minimal enhancement. Eur Radiol 21:1526–1534. https://doi.org/10.1007/s00330-011-2081-y

    Article  PubMed  PubMed Central  Google Scholar 

  43. Smets T, Lawson TM, Grandin C, Jankovski A, Raftopoulos C (2013) Immediate post-operative MRI suggestive of the site and timing of glioblastoma recurrence after gross total resection: a retrospective longitudinal preliminary study. Eur Radiol 23:1467–1477. https://doi.org/10.1007/s00330-012-2762-1

  44. Hirai T, Kitajima M, Nakamura H et al (2011) Quantitative blood flow measurements in gliomas using arterial spin-labeling at 3 T: intermodality agreement and inter- and intraobserver reproducibility study. Am J Neuroradiol 32:2073–2079. https://doi.org/10.3174/ajnr.A2725

    Article  CAS  PubMed  Google Scholar 

  45. Law-Ye B, Schertz M, Galanaud D, Dormont D, Pyatigorskaya N (2017) Arterial spin labeling to predict brain tumor grading: limits of cutoff cerebral blood flow values. Radiology 282:610–612. https://doi.org/10.1148/radiol.2017162312

  46. Kong L, Chen H, Yang Y, Chen L (2017) A meta-analysis of arterial spin labelling perfusion values for the prediction of glioma grade. Clin Radiol 72:255–261. https://doi.org/10.1016/j.crad.2016.10.016

    Article  CAS  PubMed  Google Scholar 

  47. Warmuth C, Gunther M, Zimmer C (2003) Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 228:523–532. https://doi.org/10.1148/radiol.2282020409

    Article  PubMed  Google Scholar 

  48. Lescher S, Schniewindt S, Jurcoane, Senft C, Hattingen E (2014) Time window for postoperative reactive enhancement after resection of brain tumors: less than 72 hours. Neurosurg Focus 37:E3. https://doi.org/10.3171/2014.9.FOCUS14479

  49. Gempt J, Förschler A, Buchmann N et al (2013) Postoperative ischemic changes following resection of newly diagnosed and recurrent gliomas and their clinical relevance. J Neurosurg 118:801–808. https://doi.org/10.3171/2012.12.JNS12125

    Article  PubMed  Google Scholar 

  50. Alsop DC, Detre JA, Golay X et al (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73:102–116. https://doi.org/10.1002/mrm.25197

    Article  Google Scholar 

  51. Haller S, Zaharchuk G, Thomas DL, Lovblad KO, Barkhof F, Golay X (2016) Arterial spin labeling perfusion of the brain: emerging clinical applications. Radiology 281:337–356. https://doi.org/10.1148/radiol.2016150789

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Cohen.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Nadya Pyatigorskaya.

Conflict of Interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was waived by the Institutional Review Board. All the patients were informed that they could refuse to participate in the study

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• prospective

• diagnostic or prognostic study

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, C., Law-Ye, B., Dormont, D. et al. Pseudo-continuous arterial spin labelling shows high diagnostic performance in the detection of postoperative residual lesion in hyper-vascularised adult brain tumours. Eur Radiol 30, 2809–2820 (2020). https://doi.org/10.1007/s00330-019-06474-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-019-06474-4

Keywords

Navigation