Abstract
Objective
To investigate the natural history of persistent pulmonary pure ground-glass nodules (pGGNs) with deep learning–assisted nodule segmentation.
Methods
Between January 2007 and October 2018, 110 pGGNs from 110 patients with 573 follow-up CT scans were included in this retrospective study. pGGN automatic segmentation was performed on initial and all follow-up CT scans using the Dr. Wise system based on convolution neural networks. Subsequently, pGGN diameter, density, volume, mass, volume doubling time (VDT), and mass doubling time (MDT) were calculated automatically. Enrolled pGGNs were categorized into growth, 52 (47.3%), and non-growth, 58 (52.7%), groups according to volume growth. Kaplan-Meier analyses with the log-rank test and Cox proportional hazards regression analysis were conducted to analyze the cumulative percentages of pGGN growth and identify risk factors for growth.
Results
The mean follow-up period of the enrolled pGGNs was 48.7 ± 23.8 months. The median VDT of the 52 pGGNs having grown was 1448 (range, 339–8640) days, and their median MDT was 1332 (range, 290–38,912) days. The 12-month, 24.7-month, and 60.8-month cumulative percentages of pGGN growth were 10%, 25.5%, and 51.1%, respectively, and they significantly differed among the initial diameter, volume, and mass subgroups (all p < 0.001). The growth pattern of pGGNs may conform to the exponential model. Lobulated sign (p = 0.044), initial mean diameter (p < 0.001), volume (p = 0.003), and mass (p = 0.023) predicted pGGN growth.
Conclusions
Persistent pGGNs showed an indolent course. Deep learning can assist in accurately elucidating the natural history of pGGNs. pGGNs with lobulated sign and larger initial diameter, volume, and mass are more likely to grow.
Key Points
• The pure ground-glass nodule (pGGN) segmentation accuracy of the Dr. Wise system based on convolution neural networks (CNNs) was 96.5% (573/594).
• The median volume doubling time (VDT) of 52 pure ground-glass nodules (pGGNs) having grown was 1448 days (range, 339–8640 days), and their median mass doubling time (MDT) was 1332 days (range, 290–38,912 days). The mean time to growth in volume was 854 ± 675 days (range, 116–2856 days).
• The 12-month, 24.7-month, and 60.8-month cumulative percentages of pGGN growth were 10%, 25.5%, and 51.1%, respectively, and they significantly differed among the initial diameter, volume, and mass subgroups (all p values < 0.001). The growth pattern of pure ground-glass nodules may conform to exponential model.






Abbreviations
- AAH:
-
Atypical adenomatous hyperplasia
- AIS:
-
Adenocarcinoma in situ
- CAD:
-
Computer-aided detection and diagnosis system
- CI:
-
Confidence interval
- CNN:
-
Convolution neural network
- GGN:
-
Ground-glass nodule
- GGO:
-
Ground-glass opacity
- IAC:
-
Invasive adenocarcinoma
- LDCT:
-
Low-dose CT
- MDT:
-
Mass doubling time
- MIA:
-
Minimally invasive adenocarcinoma
- pGGN:
-
Pure ground-glass nodule
- VDT:
-
Volume doubling time
References
MacMahon H, Naidich DP, Goo JM et al (2017) Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017. Radiology 284(1):228–243
Travis WD, Asamura H, Bankier AA et al (2016) The IASLC Lung Cancer Staging Project: proposals for coding T categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming eighth edition of the TNM classification of lung cancer. J Thorac Oncol 11(8):1204–1223
Aoki T (2015) Growth of pure ground-glass lung nodule detected at computed tomography. J Thorac Dis 7(9):E326–E328
Kakinuma R, Noguchi M, Ashizawa K et al (2016) Natural history of pulmonary subsolid nodules: a prospective multicenter study. J Thorac Oncol 11(7):1012–1028
Cho J, Kim ES, Kim SJ et al (2016) Long-term follow-up of small pulmonary ground-glass nodules stable for 3 years: implications of the proper follow-up period and risk factors for subsequent growth. J Thorac Oncol 11(9):1453–1459
Lee JH, Park CM, Lee SM, Kim H, McAdams HP, Goo JM (2016) Persistent pulmonary subsolid nodules with solid portions of 5 mm or smaller: their natural course and predictors of interval growth. Eur Radiol 26(6):1529–1537
Tang EK, Chen CS, Wu CC et al (2018) Natural history of persistent pulmonary subsolid nodules: long-term observation of different interval growth. Heart Lung Circ S1443-9506(18):31889–31884
Kobayashi Y, Sakao Y, Deshpande GA et al (2014) The association between baseline clinical-radiological characteristics and growth of pulmonary nodules with ground-glass opacity. Lung Cancer 83(1):61–66
Chang B, Hwang JH, Choi YH et al (2013) Natural history of pure ground-glass opacity lung nodules detected by low-dose CT scan. Chest 143(1):172–178
Matsuguma H, Mori K, Nakahara R et al (2013) Characteristics of subsolid pulmonary nodules showing growth during follow-up with CT scanning. Chest 143(2):436–443
Lee SW, Leem CS, Kim TJ et al (2013) The long-term course of ground-glass opacities detected on thin-section computed tomography. Respir Med 107(6):904–910
Kobayashi Y, Fukui T, Ito S et al (2013) How long should small lung lesions of ground-glass opacity be followed? J Thorac Oncol 8(3):309–314
Takahashi S, Tanaka N, Okimoto T et al (2012) Long term follow-up for small pure ground-glass nodules: implications of determining an optimum follow-up period and high-resolution CT findings to predict the growth of nodules. Jpn J Radiol 30(3):206–217
Hiramatsu M, Inagaki T, Inagaki T et al (2008) Pulmonary ground-glass opacity (GGO) lesions-large size and a history of lung cancer are risk factors for growth. J Thorac Oncol 3(11):1245–1250
Song YS, Park CM, Park SJ, Lee SM, Jeon YK, Goo JM (2014) Volume and mass doubling times of persistent pulmonary subsolid nodules detected in patients without known malignancy. Radiology 273(1):276–284
Oda S, Awai K, Murao K et al (2010) Computer-aided volumetry of pulmonary nodules exhibiting ground-glass opacity at MDCT. AJR Am J Roentgenol 194(2):398–406
Oda S, Awai K, Murao K et al (2011) Volume-doubling time of pulmonary nodules with ground glass opacity at multidetector CT: assessment with computer-aided three-dimensional volumetry. Acad Radiol 18(1):63–69
de Hoop B, Gietema H, van de Vorst S, Murphy K, van Klaveren RJ, Prokop M (2010) Pulmonary ground-glass nodules: increase in mass as an early indicator of growth. Radiology 255(1):199–206
Detterbeck FC, Gibson CJ (2008) Turning gray: the natural history of lung cancer over time. J Thorac Oncol 3(7):781–792
Travis WD, Brambilla E, Nicholson AG et al (2015) The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 10(9):1243–1260
Acknowledgments
We would like to thank Mr. Chang-Fa Xia (National Office for Cancer Prevention and Control, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China) for his statistical assistance.
Funding
This study has received funding from the National Key R&D Program of China (2017YFC1308700), Chinese Academy of Medical Sciences Initiative for Innovative Medicine (2018-12M-AI-013), the National Natural Science Foundation of China (81171344), and Innovation Foundation for Doctoral Candidates of Peking Union Medical College (2018-1002-02-21).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Guarantor
The scientific guarantor of this publication is Jian-Wei Wang.
Conflict of interest
The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.
Statistics and biometry
Mr. Chang-Fa Xia (National Office for Cancer Prevention and Control, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China) kindly provided statistical advice for this manuscript.
Informed consent
Written informed consent was waived by the Institutional Review Board.
Ethical approval
Institutional Review Board approval was obtained.
Methodology
• retrospective
• observational
• performed at one institution
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(DOCX 3968 kb)
Rights and permissions
About this article
Cite this article
Qi, LL., Wu, BT., Tang, W. et al. Long-term follow-up of persistent pulmonary pure ground-glass nodules with deep learning–assisted nodule segmentation. Eur Radiol 30, 744–755 (2020). https://doi.org/10.1007/s00330-019-06344-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00330-019-06344-z