Diagnosis of peripheral bone and prosthetic joint infections: overview on the consensus documents by the EANM, EBJIS, and ESR (with ESCMID endorsement)

Abstract

Objectives

Peripheral bone infection (PBI) and prosthetic joint infection (PJI) are two different infectious conditions of the musculoskeletal system. They have in common to be quite challenging to be diagnosed and no clear diagnostic flowchart has been established. Thus, a conjoined initiative on these two topics has been initiated by the European Society of Radiology (ESR), the European Association of Nuclear Medicine (EANM), the European Bone and Joint Infection Society (EBJIS), and the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). The purpose of this work is to provide an overview on the two consensus documents on PBI and PJI that originated by the conjoined work of the ESR, EANM, and EBJIS (with ESCMID endorsement).

Methods and results

After literature search, a list of 18 statements for PBI and 25 statements for PJI were drafted in consensus on the most debated diagnostic challenges on these two topics, with emphasis on imaging.

Conclusions

Overall, white blood cell scintigraphy and magnetic resonance imaging have individually demonstrated the highest diagnostic performance over other imaging modalities for the diagnosis of PBI and PJI. However, the choice of which advanced diagnostic modality to use first depends on several factors, such as the benefit for the patient, local experience of imaging specialists, costs, and availability. Since robust, comparative studies among most tests do not exist, the proposed flowcharts are based not only on existing literature but also on the opinion of multiple experts involved on these topics.

Key Points

• For peripheral bone infection and prosthetic joint infection, white blood cell and magnetic resonance imaging have individually demonstrated the highest diagnostic performance over other imaging modalities.

• Two evidence- and expert-based diagnostic flowcharts involving variable combination of laboratory tests, biopsy methods, and radiological and nuclear medicine imaging modalities are proposed by a multi-society expert panel.

• Clinical application of these flowcharts depends on several factors, such as the benefit for the patient, local experience, costs, and availability.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Abbreviations

AGA:

Anti-granulocyte antibody

CRP:

C-reactive protein

CT:

Computed tomography

EANM:

European Society of Nuclear Medicine

EBJIS:

European Bone and Joint Infection Society

ESCMID:

European Society of Clinical Microbiology and Infectious Diseases

ESR:

Erythrocyte sedimentation rate

ESR:

European Society of Radiology

FDG-PET:

Fluorodeoxyglucose-positron-emission tomography

HMPAO:

Hexamethylpropylene amine oxime

MRI:

Magnetic resonance imaging

OCEBM:

Oxford Center for Evidence-based Medicine

PBI:

Peripheral bone infection

PICO:

Population/problem, intervention/indicator, comparator, outcome

PJI:

Prosthesis joint infection

SPECT:

Single-photon emitting computed tomography

WBC:

White blood cell

References

  1. 1.

    Tiemann AH, Hofmann GO (2009) Principles of the therapy of bone infections in adult extremities: are there any new developments? Strategies Trauma Limb Reconstr 4:57–64

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Kurtz S, Mowat F, Ong K, Chan N, Lau E, Halpern M (2005) Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J Bone Joint Surg Am 87:1487–1497

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Lew DP, Waldvogel FA (2004) Osteomyelitis. Lancet 364:369–379

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Mouzopoulos G, Kanakaris NK, Kontakis G, Obakponovwe O, Townsend R, Giannoudis PV (2011) Management of bone infections in adults: the surgeon’s and microbiologist's perspectives. Injury. 42(Suppl 5):S18–S23

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Jutte P, Lazzeri E, Sconfienza LM et al (2014) Diagnostic flowcharts in osteomyelitis, spondylodiscitis and prosthetic joint infection. Q J Nucl Med Mol Imaging 58:2–19

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Ochsner P, Bodler P-M, Eich G et al (2014) Infections of the musculoskeletal system. Swiss orthopaedics in-house publisher, Grandvaux

    Google Scholar 

  7. 7.

    Korim MT, Payne R, Bhatia M (2014) A case-control study of surgical site infection following operative fixation of fractures of the ankle in a large U.K. trauma unit. Bone Joint J 96-B:636–640

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Malhotra AK, Goldberg S, Graham J et al (2014) Open extremity fractures: impact of delay in operative debridement and irrigation. J Trauma Acute Care Surg 76:1201–1207

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Usuelli FG, Indino C, Maccario C, Manzi L, Liuni FM, Vulcano E (2017) Infections in primary total ankle replacement: anterior approach versus lateral transfibular approach. Foot Ankle Surg S1268-7731(17):30790–30797

    Google Scholar 

  10. 10.

    Glaudemans AW, Galli F, Pacilio M, Signore A (2013) Leukocyte and bacteria imaging in prosthetic joint infection. Eur Cell Mater 25:61–77

    PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Cataldo MA, Petrosillo N, Cipriani M, Cauda R, Tacconelli E (2010) Prosthetic joint infection: recent developments in diagnosis and management. J Infect 61:443–448

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Trampuz A, Zimmerli W (2005) Prosthetic joint infections: update in diagnosis and treatment. Swiss Med Wkly 135:243–251

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Berbari EF, Hanssen AD, Duffy MC et al (1998) Risk factors for prosthetic joint infection: case-control study. Clin Infect Dis 27:1247–1254

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Zimmerli W, Trampuz A, Ochsner PE (2004) Prosthetic-joint infections. N Engl J Med 351:1645–1654

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Drago L, De Vecchi E, Bortolin M, Zagra L, Romanò CL, Cappelletti L (2017) Epidemiology and antibiotic resistance of late prosthetic knee and hip infections. J Arthroplasty 32:2496–2500

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Glaudemans AWJM, Jutte PC, Cataldo MA et al (2019) Consensus document for the diagnosis of peripheral bone infection in adults: a joint paper by the EANM, EBJIS, and ESR (with ESCMID endorsement). EJNMMI. https://doi.org/10.1007/s00259-019-4262-x

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Signore A, Sconfienza LM, Borens O et al (2019) Consensus document for the diagnosis of prosthetic joint infections: a joint paper by the EANM, EBJIS, and ESR (with ESCMID endorsement). EJNMMI. https://doi.org/10.1007/s00259-019-4263-9

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    The 2011 Oxford CEBM levels of evidence (introductory document). https://www.cebm.net/2016/05/ocebm-levels-of-evidence/ Accessed on 30 Jan 2019

  19. 19.

    OCEBM Levels of Evidence Working Group. The Oxford 2011 Levels of Evidence. https://www.cebm.net/wp-content/uploads/2014/06/CEBM-Levels-of-Evidence-2.1.pdf Accessed on 30 Jan 2019

  20. 20.

    Cierny G III, Mader JT, Penninck JJ (2003) The classic: a clinical staging system for adult osteomyelitis. Clin Orthop 414:7–24

    Article  Google Scholar 

  21. 21.

    Lavery LA, Armstrong DG (2007) Temperature monitoring to assess, predict, and prevent diabetic foot complications. Curr Diab Rep 7:416–419

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Rabjohn L, Roberts K, Troiano M, Schoenhaus H (2007) Diagnostic and prognostic value of erythrocyte sedimentation rate in contiguous osteomyelitis of the foot and ankle. J Foot Ankle Surg 46:230–237

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Maharajan K, Patro DK, Menon J et al (2013) Serum Procalcitonin is a sensitive and specific marker in the diagnosis of septic arthritis and acute osteomyelitis. J Orthop Surg Res 8:19

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Roger PM, Cua E, Courjon J, Landraud L, Carles M, Bernard E (2014) The impact of bacteremia on the outcome of bone infections. Med Mal Infect 44:380–386

    PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Zuluaga AF, Galvis W, Saldarriaga JG, Agudelo M, Salazar BE, Vesga O (2006) Etiologic diagnosis of chronic osteomyelitis: a prospective study. Arch Intern Med 166:95–100

    PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Zuluaga AF, Galvis W, Jaimes F, Vesga O (2002) Lack of microbiological concordance between bone and non-bone specimens in chronic osteomyelitis: an observational study. BMC Infect Dis 2:8

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Akinyoola AL, Adegbehingbe OO, Aboderin AO (2009) Therapeutic decision in chronic osteomyelitis: sinus track culture versus intraoperative bone culture. Arch Orthop Trauma Surg 129:449–453

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Agarwal S, Zahid M, Sherwani MK, Abbas M, Huda N, Khan AQ (2005) Comparison of the results of sinus track culture and sequestrum culture in chronic osteomyelitis. Acta Orthop Belg 71:209–212

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Lindfors N, Geurts J, Drago L et al (2017) Antibacterial bioactive glass, S53P4, for chronic bone infections - a multinational study. Adv Exp Med Biol 971:81–92

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Bernard L, Uçkay I, Vuagnat A et al (2010) Two consecutive deep sinus tract cultures predict the pathogen of osteomyelitis. Int J Infect Dis 14:e390–e393

    PubMed  Article  Google Scholar 

  31. 31.

    Khatri G, Wagner DK, Sohnle PG (2001) Effect of bone biopsy in guiding antimicrobial therapy for osteomyelitis complicating open wounds. Am J Med Sci 321:367–371

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Wu JS, Gorbachova T, Morrison WB, Haims AH (2007) Imaging-guided bone biopsy for osteomyelitis: are there factors associated with positive or negative cultures? AJR Am J Roentgenol 188:1529–1534

    PubMed  Article  Google Scholar 

  33. 33.

    Boutin R (1998) Update on imaging of musculoskeletal infections. Orthop Clin North Am 29:41–66

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    David R, Barron BJ, Modewell JE (1987) Osteomyelitis, acute and chronic. Radiol Clin North Am 25:1171–1201

    CAS  PubMed  Google Scholar 

  35. 35.

    Gold RH, Hawkins RA, Katz RD (1991) Bacterial osteomyelitis: findings on plain radiography, CT, MR, and scintigraphy. AJR Am J Roentgenol 157:365–370

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Merlet A, Cazanave C, Dauchy FA et al (2014) Prognostic factors of calcaneal osteomyelitis. Scand J Infect Dis 46:555–560

    PubMed  Article  Google Scholar 

  37. 37.

    Erdman WA, Tamburro F, Jayson HT, Weatherall PT, Ferry KB, Peshock RM (1991) Osteomyelitis: characteristics and pitfalls of diagnosis with MR imaging. Radiology. 180:533–539

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Morrison WB, Schweitzer ME, Bock GW et al (1993) Diagnosis of osteomyelitis: utility of fat-suppressed contrast-enhanced MR imaging. Radiology. 189:251–257

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Demirev A, Weijers R, Geurts J, Mottaghy F, Walenkamp G, Brans B (2014) Comparison of 18F-FDG PET/CT and MRI in the diagnosis of acute osteomyelitis. Skeletal Radiol 43:665–672

    PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Averill LW, Hernandez A, Gonzalez L, Peña AH, Jaramillo D (2009) Diagnosis of osteomyelitis in children: utility of fat-suppressed contrast-enhanced MRI. AJR Am J Roentgenol 192:1232–1238

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Bellelli A, Silvestri E, Barile A et al (2019) Position paper on magnetic resonance imaging protocols in the musculoskeletal system (excluding the spine) by the Italian College of Musculoskeletal Radiology. Radiol Med. https://doi.org/10.1007/s11547-019-00992-3

    PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Wang GL, Zhao K, Liu ZF, Dong MJ, Yang SY (2011) A meta-analysis of fluorodeoxyglucose-positron emission tomography versus scintigraphy in the evaluation of suspected osteomyelitis. Nucl Med Commun 32:1134–1142

    PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Hatzenbuehler J, Pulling TJ (2011) Diagnosis and management of osteomyelitis. Am Fam Physician 84:1027–1033

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    van der Bruggen W, Bleeker-Rovers CP, Boerman OC, Gotthardt M, Oyen WJ (2010) PET and SPECT in osteomyelitis and prosthetic bone and joint infections: a systematic review. Semin Nucl Med 40:3–15

    PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Prandini N, Lazzeri E, Rossi B, Erba P, Parisella MG, Signore A (2006) Nuclear medicine imaging of bone infections. Nucl Med Commun 27:633–644

    PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Termaat MF, Raijmakers PG, Scholten HJ, Bakker FC, Patka P, Haarman HJ (2005) The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: a systematic review and meta-analysis. J Bone Joint Surg Am 87:2464–2471

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Erba PA, Glaudemans AW, Veltman NC et al (2014) Image acquisition and interpretation criteria for 99mTc-HMPAO-labelled white blood cell scintigraphy: results of a multicentre study. Eur J Nucl Med Mol Imaging 41:615–623

    PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Thang SP, Tong AK, Lam WW, Ng DC (2014) SPECT/CT in musculoskeletal infections. Semin Musculoskelet Radiol 18:194–202

    PubMed  Article  Google Scholar 

  49. 49.

    Cyteval C, Bourdon A (2012) Imaging orthopedic implant infections. Diagn Interv Imaging 93:547–557

    PubMed  Article  Google Scholar 

  50. 50.

    Sanlı Y, Ozkan ZG, Unal SN, Türkmen C, Kılıçoğlu O (2011) The additional value of Tc 99m HMPAO white blood cell SPECT in the evaluation of bone and soft tissue infections. Mol Imaging Radionucl Ther 20:7–13

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Vijayanathan S, Butt S, Gnanasegaran G, Groves AM (2009) Advantages and limitations of imaging the musculoskeletal system by conventional radiological, radionuclide, and hybrid modalities. Semin Nucl Med 39:357–368

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Schillaci O (2009) Hybrid imaging systems in the diagnosis of osteomyelitis and prosthetic joint infection. Q J Nucl Med Mol Imaging 53:95–104

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Filippi L, Schillaci O (2006) Usefulness of hybrid SPECT/CT in 99mTc-HMPAO-labeled leukocyte scintigraphy for bone and joint infections. J Nucl Med 47:1908–1913

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Bar-Shalom R, Yefremov N, Guralnik L et al (2006) SPECT/CT using 67Ga and 111In-labeled leukocyte scintigraphy for diagnosis of infection. J Nucl Med 47:587–594

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Glaudemans AW, de Vries EF, Vermeulen LE, Slart RH, Dierckx RA, Signore A (2013) A large retrospective single centre study to define the best image acquisition protocols and interpretation criteria for white blood cell scintigraphy with 99mTc-HMPAO-labelled leukocytes in musculoskeletal infections. Eur J Nucl Med Mol Imaging 40:1760–1769

    PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Richter WS, Ivancevic V, Meller J et al (2011) 99mTc-besilesomab (Scintimun) in peripheral osteomyelitis: comparison with 99mTc-labelled white blood cells. Eur J Nucl Med Mol Imaging 38:899–910

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Vittorini E, Del Giudice E, Pizzoli A, Caudana R (2005) MRI versus scintigraphy with 99mTc-HMPAO-labelled granulocytes in the diagnosis of bone infection. Radiol Med 109:395–403

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Hughes DK (2003) Nuclear medicine and infection detection : the relative effectiveness of imaging with 111In-oxine, 99mTc-HMPAO-, and 99mTc-stannous fluoride colloid-labeled leukocytes and with 67Ga-citrate. J Nucl Med Technol 31:196–201

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Wolf G, Aigner RM, Schwarz T (2001) Diagnosis of bone infection using 99mTc-HMPAO labeled leukocytes. Nucl Med Commun 22:1201–1206

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Quirce R, Carril JM, Gutiérrez-Mendiguchia C et al (2002) Assessment of the diagnostic capacity of planar scintigraphy and SPECT with 99mTc-HMPAO-labelled leukocytes in superficial and deep sternal infections after median sternotomy. Nucl Med Commun 23:453–459

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Becker W, Meller J (2001) The role of nuclear medicine in infection and inflammation. Lancet Infect Dis 1:326–333

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Sonmezoglu K, Sonmezoglu M, Halac M et al (2001) Usefulness of 99mTc-ciprofloxacin (infecton) scan in diagnosis of chronic orthopedic infections: comparative study with 99mTc-HMPAO leukocyte scintigraphy. J Nucl Med 42:567–574

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Teller RE, Christie MJ, Martin W, Nance EP, Haas DW (2000) Sequential indium-labeled leukocyte and bone scans to diagnose prosthetic joint infection. Clin Orthop Relat Res 3723:241–247

    Article  Google Scholar 

  64. 64.

    Meller J, Liersch T, Oezerden MM et al (2010) Targeting NCA-95 and other granulocyte antigens and receptors with radiolabeled monoclonal antibodies (Mabs). Q J Nucl Med Mol Imaging 54:582–598

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Skehan SJ, White JF, Evans JW et al (2003) Mechanism of accumulation of 99mTc-sulesomab in inflammation. J Nucl Med 44:11–18

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Ryan PJ (2002) Leukoscan for orthopaedic imaging in clinical practice. Nucl Med Commun 23:707–714

    PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Devillers A, Garin E, Polardt JL et al (2000) Comparison of Tc-99m-labelled antileukocyte fragment Fab’ and Tc-99m-HMPAO leukocyte scintigraphy in the diagnosis of bone and joint infections : a prospective study. Nucl Med Commun 21:747–753

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Palestro CJ (2015) Radionuclide imaging of osteomyelitis. Semin Nucl Med 45:32–46

    PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Demirev A, Weijers R, Geurts J, Mottaghy F, Walenkamp G, Brans B (2014) Comparison of [18 F] FDG PET/CT and MRI in the diagnosis of active osteomyelitis. Skeletal Radiol 43:665–672

    PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Basu S, Chryssikos T, Moghadam-Kia S, Zhuang H, Torigian DA, Alavi A (2009) Positron emission tomography as a diagnostic tool in infection: present role and future possibilities. Semin Nucl Med 39:36–51

    PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Strobel K, Stumpe KD (2007) PET/CT in musculoskeletal infection. Semin Musculoskelet Radiol 11:353–364

    PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Meller J, Sahlmann CO, Liersch T, Hao Tang P, Alavi A (2007) Nonprosthesis orthopedic applications of (18) F fluoro-2-deoxy-D-glucose PET in the detection of osteomyelitis. Radiol Clin North Am 45:719–733

    PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Hartmann A, Eid K, Dora C, Trentz O, von Schulthess GK, Stumpe KD (2007) Diagnostic value of 18F-FDG PET/CT in trauma patients with suspected chronic osteomyelitis. Eur J Nucl Med Mol Imaging 34:704–714

    PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Galbusera F, Volkheimer D, Reitmaier S, Berger-Roscher N, Kienle A, Wilke HJ (2015) Pedicle screw loosening: a clinically relevant complication? Eur Spine J 24:1005–1016

    PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Gille J, Ince A, González O, Katzer A, Loehr JF (2006) Single-stage revision of peri-prosthetic infection following total elbow replacement. J Bone Joint Surg Br 88:1341–1346

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Achermann Y, Stasch P, Preiss S, Lucke K, Vogt M (2014) Characteristics and treatment outcomes of 69 cases with early prosthetic joint infections of the hip and knee. Infection. 42:511–519

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Garcia RM, Hardy BT, Kraay MJ, Goldberg VM (2010) Revision total knee arthroplasty for aseptic and septic causes in patients with rheumatoid arthritis. Clin Orthop Relat Res 468:82–89

    PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Magnuson JE, Brown ML, Hauser MF, Berquist TH, Fitzgerald RH Jr, Klee GG (1998) In-111-labeled leukocyte scintigraphy in suspected orthopedic prosthesis infection: comparison with other imaging modalities. Radiology 168:235–239

    Article  Google Scholar 

  79. 79.

    Virolainen P, Lahteenmaki H, Hiltunen A, Sipola E, Meurman O, Nelimarkka O (2002) The reliability of diagnosis of infection during revision arthroplasties. Scand J Surg 91:178–181

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Bailey DL, Pichler BJ, Gückel B et al (2016) Combined PET/MRI: from status quo to status go. Summary report of the fifth international workshop on PET/MR imaging; February 15-19, 2016; Tübingen, Germany. Mol Imaging Biol 18:637–650

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Alijanipour P, Bakhshi H, Parvizi J (2013) Diagnosis of periprosthetic joint infection: the threshold for serologic markers. Clin Orthop Relat Res 471:3186–3195

    PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Berbari E, Mabry T, Tsaras G et al (2010) Inflammatory blood laboratory levels as markers of prosthetic joint infection: a systematic review and meta-analysis. J Bone Joint Surg Am 92:2102–2109

    PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Baré J, MacDonald SJ, Bourne RB (2006) Preoperative evaluations in revision total knee arthroplasty. Clin Orthop Relat Res 446:40–44

    PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    De Vecchi E, Villa F, Bortolin M et al (2016) Leucocyte esterase, glucose and C-reactive protein in the diagnosis of prosthetic joint infections: a prospective study. Clin Microbiol Infect 22:555–560

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  85. 85.

    Villa F, Toscano M, De Vecchi E, Bortolin M, Drago L (2017) Reliability of a multiplex PCR system for diagnosis of early and late prosthetic joint infections before and after broth enrichment. Int J Med Microbiol 307:363–370

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Trampuz A, Zimmerli W (2008) Diagnosis and treatment of implant-associated septic arthritis and osteomyelitis. Curr Infect Dis Rep 10:394–403

    PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Ali S, Christie A, Chapel A (2009) The pattern of procalcitonin in primary total hip and knee arthroplasty and its implication in periprosthetic infection. J Clin Med Res 1:90–94

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Bergin PF, Doppelt JD, Hamilton WG et al (2010) Detection of periprosthetic infections with use of ribosomal RNA-based polymerase chain reaction. J Bone Joint Surg Am 92:654–663

    PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Cipriano CA, Brown NM, Michael AM, Moric M, Sporer SM, Della Valle CJ (2012) Serum and synovial fluid analysis for diagnosing chronic periprosthetic infection in patients with inflammatory arthritis. J Bone Joint Surg Am 94:594–600

    PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Della Valle GJ, Sporer SM, Jacobs JJ, Berger RA, Rosenberg AG, Paprosky WG (2007) Preoperative testing for sepsis before revision total knee arthroplasty. J Arthroplasty 22(6 suppl 2):90–93

    PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Nilsdotter-Augustinsson A, Briheim G, Herder A, Ljunghusen O, Wahlström O, Ohman L (2007) Inflammatory response in 85 patients with loosened hip prostheses: a prospective study comparing inflammatory markers in patients with aseptic and septic prosthetic loosening. Acta Orthop 78:629–639

    PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Bottner F, Wegner A, Winkelmann W, Becker K, Erren M, Götze C (2007) Interleukin-6, procalcitonin and TNF-a: markers of peri-prosthetic infection following total joint replacement. J Bone Joint Surg Br 89:94–99

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Schinsky MF, Della Valle CJ, Sporer SM, Paprosky WG (2008) Perioperative testing for joint infection in patients undergoing revision total hip arthroplasty. J Bone Joint Surg Am 90:1869–1875

    PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Greidanus NV, Masri BA, Garbuz DS et al (2007) Use of erythrocyte sedimentation rate and C-reactive protein level to diagnose infection before revision total knee arthroplasty: a prospective evaluation. J Bone Joint Surg Am 89:1409–1416

    PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Spangehl MJ, Masri BA, O’Connell JX, Duncan CP (1998) Prospective analysis of preoperative and intraoperative investigations for the diagnosis of infection at the sites of two hundred and two revision total hip arthroplasties. J Bone Joint Surg Am 81:672–683

    Article  Google Scholar 

  96. 96.

    Trampuz A, Piper KE, Hanssen AD et al (2006) Sonication of explanted prosthetic components in bags for diagnosis of prosthetic joint infection is associated with risk of contamination. J Clin Microbiol 44:628–631

    PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Vasoo S, Cunningham SA, Greenwood-Quaintance KE et al (2015) Evaluation of the film array blood culture ID panel on biofilms dislodged from explanted arthroplasties for prosthetic joint infection diagnosis. J Clin Microbiol 53:2790–2792

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Zmistowsky B, Restrepo C, Huang R, Hozack WJ, Parvizi J (2012) Periprosthetic joint infection diagnosis: a complete understanding of white blood cell count and differential. J Arthroplasty 27:1589–1593

    Article  Google Scholar 

  99. 99.

    Drago L, Toscano M, Tacchini L, Banfi G (2017) α-Defensin point-of-care test for diagnosis of prosthetic joint infections: neglected role of laboratory and clinical pathologists. Clin Chem Lab Med 27(56):19–24

    Google Scholar 

  100. 100.

    Gallo J, Kolar M, Dendis M et al (2008) Culture and PCR analysis of joint fluid in the diagnosis of prosthetic joint infection. New Microbiol 31:97–104

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Bingham J, Clarke H, Spangehl M, Schwartz A, Beauchamp C, Goldberg B (2014) The alpha defensin-1 biomarker assay can be used to evaluate the potentially infected total joint arthroplasty. Clin Orthop Relat Res 472:4006–4009

    PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Lenski M, Scherer MA (2014) Synovial IL-6 as inflammatory marker in periprosthetic joint infections. J Arthroplasty 29:1105–1109

    PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    Jacovides CL, Parvizi J, Adeli B, Jung KA (2011) Molecular markers for diagnosis of periprosthetic joint infection. J Arthroplasty 26(6 suppl):99–103

    PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Ghanem E, Ketonis C, Restrepo C, Joshi A, Barrack R, Parvizi J (2009) Periprosthetic infection: where do we stand with regard to gram stain? Acta Orthop 80:37–40

    PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Fink B, Makowiak C, Fuerst M, Berger I, Schäfer P, Frommelt L (2008) The value of synovial biopsy, joint aspiration and C-reactive protein in the diagnosis of late peri-prosthetic infection of total knee replacements. J Bone Joint Surg Br 90:874–878

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. 106.

    Mikkelsen DB, Pedersen C, Højbjerg T, Schønheyder HC (2006) Culture of multiple peroperative biopsies and diagnosis of infected knee arthroplasties. APMIS 114:449–452

    PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Esteban J, Alonso-Rodriguez N, del-Prado G et al (2012) PCR-hybridization after sonication improves diagnosis of implant-related infection. Acta Orthop 83:299–304

    PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Deirmengian C, Kardos K, Kilmartin P, Cameron A, Schiller K, Parvizi J (2014) Combined measurement of synovial fluid alpha-defensin and C-reactive protein levels: highly accurate for diagnosing periprosthetic joint infection. J Bone Joint Surg Am 96:1439–1445

    PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Deirmengian C, Kardos K, Kilmartin P, Cameron A, Schiller K, Parvizi J (2014) Diagnosing periprosthetic joint infection: has the era of the biomarker arrived? Clin Orthop Relat Res 472:3254–3262

    PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Ali F, Wilkinson JM, Cooper JR et al (2006) Accuracy of joint aspiration for the preoperative diagnosis of infection in total hip arthroplasty. J Arthroplasty 21:221–226

    PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    Achermann Y, Vogt M, Leunig M, Wüst J, Trampuz J (2010) Improved diagnosis of periprosthetic joint infection by multiplex PCR of sonication fluid from removed implants. J Clin Microbiol 48:1208–1214

    PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Wetters NG, Berend KR, Lombardi AV, Morris MJ, Tucker TL, Della Valle CJ (2012) Leukocyte esterase reagent strips for the rapid diagnosis of periprosthetic joint infection. J Arthroplasty 27(8 suppl):8–11

    PubMed  Article  PubMed Central  Google Scholar 

  113. 113.

    Parvizi J, Jacovides C, Adeli B, Jung KA, Hozack WJ (2012) Mark B. Coventry award: synovial C-reactive protein: a prospective evaluation of a molecular marker for periprosthetic knee joint infection. Clin Orthop Relat Res 470:54–60

    PubMed  Article  PubMed Central  Google Scholar 

  114. 114.

    Tetreault MW, Wetters NG, Moric M, Gross CE, Della Valle CJ (2014) Is synovial C-reactive protein a useful marker for periprosthetic joint infection? Clin Orthop Relat Res 472:3997–4003

    PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Gomez E, Cazanave C, Cunningham SA et al (2012) Prosthetic joint infection diagnosis using broad-range PCR of biofilms dislodged from knee and hip arthroplasty surfaces using sonication. J Clin Microbiol 50:3501–3508

    PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Tunney MM, Patrick S, Curran MD et al (1999) Detection of prosthetic hip infection at revision arthroplasty by immunofluorescence microscopy and PCR amplification of the bacterial 16S rRNA gene. J Clin Microbiol 37:3281–3290

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Battaglia M, Vannini F, Guaraldi F, Rossi G, Biondi F, Sudanese A (2011) Validity of preoperative ultrasound-guided aspiration in the revision of hip prosthesis. Ultrasound Med Biol 37:1977–1983

    PubMed  Article  PubMed Central  Google Scholar 

  118. 118.

    Hindle P, Davidson E, Biant LC (2012) Septic arthritis of the knee: the use and effect of antibiotics prior to diagnostic aspiration. Ann R Coll Surg Engl 94:351–355

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Atkins BL, Athanasou N, Deeks JJ et al (1998) Prospective evaluation of criteria for microbiological diagnosis of prosthetic-joint infection at revision arthroplasty. J Clin Microbiol 36:2932–2939

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Cazanave C, Greenwood-Quaintance KE, Hanssen AD et al (2013) Rapid molecular microbiologic diagnosis of prosthetic joint infection. J Clin Microbiol 51:2280–2287

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Esteban J, Gomez-Barrena E, Cordero J, Martín-de-Hijas NZ, Kinnari TJ, Fernandez-Roblas R (2008) Evaluation of quantitative analysis of cultures from sonicated retrieved orthopedic implants in diagnosis of orthopedic infection. J Clin Microbiol 46:488–492

    PubMed  Article  PubMed Central  Google Scholar 

  122. 122.

    Cheung A, Lachiewicz PF, Renner JB (1997) The role of aspiration and contrast-enhanced arthrography in evaluating the uncemented hip arthroplasty. AJR Am J Roentgenol 168:1305–1309

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  123. 123.

    Howard CB, Einhorn M, Dagan R, Yagupski P, Porat S (1994) Fine-needle bone biopsy to diagnose osteomyelitis. J Bone Joint Surg Br 76:311–314

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. 124.

    Bonhoeffer J, Haeberle B, Schaad UB, Heininger U (2001) Diagnosis of acute haematogenous osteomyelitis and septic arthritis, 20 years experience at the university children’s hospital Basel. Swiss Med Wkly 131:575–581

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Barrack RL, Harris WH (1993) The value of aspiration of the hip joint before revision total hip arthroplasty. J Bone Joint Surg Am 75:66–76

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126.

    Portillo ME, Salvadó M, Sorli L et al (2012) Multiplex PCR of sonication fluid accurately differentiates between prosthetic joint infection and aseptic failure. J Infect 65:541–548

    PubMed  Article  PubMed Central  Google Scholar 

  127. 127.

    Janz V, Wassilew GI, Kribus M, Trampuz A, Perka C (2015) Improved identification of polymicrobial infection in total knee arthroplasty through sonicate fluid cultures. Arch Orthop Trauma Surg 135:1453–1457

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  128. 128.

    Minassian AM, Newham R, Kalimeris E, Bejon P, Atkins BL, Bowler ICJW (2014) Use of an automated blood culture system (BD BACTEC) for the diagnosis of prosthetic joint infections: easy and fast. BMC Infect Dis 14:233

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  129. 129.

    Frangiamore SJ, Gajewski ND, Saleh A, Farias-Kovac M, Barsoum WK, Higuera CA (2016) Alfa-defensin accuracy to diagnose periprosthetic joint infection - best available test? J Arthroplasty 31:456–460

    PubMed  Article  PubMed Central  Google Scholar 

  130. 130.

    Ettinger M, Calliess T, Kielstein JT et al (2015) Circulating biomarkers for discrimination between aseptic joint failure, low-grade infection and high grade septic failure. Clin Infect Dis 61:332–341

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  131. 131.

    Frangiamore SJ, Saleh A, Grosso MJ et al (2015) α-Defensin as a predictor of periprosthetic shoulder infection. J Shoulder Elbow Surg 24:1021–1027

    PubMed  Article  PubMed Central  Google Scholar 

  132. 132.

    Cipriano C, Maiti A, Hale G, Jiranek W (2014) The host response: toll-like receptor expression in periprosthetic tissues as a biomarker for deep joint infection. J Bone Joint Surg Am 96:1692–1698

    PubMed  Article  PubMed Central  Google Scholar 

  133. 133.

    Liu JZ, Saleh A, Klika AK, Barsoum WK, Higuera CA (2014) Serum inflammatory markers for periprosthetic knee infection in obese versus non-obese patients. J Arthroplasty 29:1880–1883

    PubMed  Article  PubMed Central  Google Scholar 

  134. 134.

    Drago L, De Vecchi E, Cappelletti L et al (2015) Prolonging culture to 15 days improves bacterial detection in bone and joint infections. Eur J Clin Microbiol Infect Dis 34:1809–1813

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  135. 135.

    Trampuz A, Piper KE, Jacobson MJ et al (2007) Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med 357:654–663

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  136. 136.

    Spangehl MJ, Masterson E, Masri BA, O’Connell JX, Duncan CP (1999) The role of intraoperative gram stain in the diagnosis of infections during revision total hip arthroplasty. J Arthroplasty 14:952–956

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  137. 137.

    Barrack RL, Jennings RW, Wolfe MW, Bertot AJ (1997) The Coventry Award. The value of preoperative aspiration before total knee revision. Clin Orthop Relat Res (345) 8–16

    Article  Google Scholar 

  138. 138.

    Fink B, Gebhard A, Fuerst M, Berger I, Schäfer P (2013) High diagnostic value of synovial biopsy in periprosthetic joint infection of the hip. Clin Orthop Relat Res 471:956–964

    PubMed  Article  PubMed Central  Google Scholar 

  139. 139.

    Rak M, Barlic-Maganja D, Kavcic M, Trebse R, Cor A (2013) Comparison of molecular and culture method in diagnosis of prosthetic joint infection. FEMS Microbiol Lett 343:42–48

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  140. 140.

    Morawietz L, Tiddens O, Mueller M et al (2009) Twenty-three neutrophil granulocytes in 10 high-power fields is the best histopathological threshold to differentiate between aseptic and septic endoprosthesis loosening. Histopathology 54:847–853

    PubMed  Article  PubMed Central  Google Scholar 

  141. 141.

    Silvestri E, Barile A, Albano D et al (2018) Interventional therapeutic procedures in the musculoskeletal system: an Italian survey by the Italian College of Musculoskeletal Radiology. Radiol Med 123:314–321

    PubMed  Article  PubMed Central  Google Scholar 

  142. 142.

    Eisler T, Svensson O, Engström CF et al (2001) Ultrasound for diagnosis of infection in revision total hip arthroplasty. J Arthroplasty 16:1010–1017

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  143. 143.

    Tomas X, Bori G, Garcia S et al (2011) Accuracy of CT-guided joint aspiration in patients with suspected infection status post-total hip arthroplasty. Skeletal Radiol 40:57–64

    PubMed  Article  PubMed Central  Google Scholar 

  144. 144.

    Lyons CW, Berquist TH, Lyons JC, Rand JA, Brown ML (1985) Evaluation of radiographic findings in painful hip arthroplasties. Clin Orthop Relat Res (195) 239–251

  145. 145.

    Tigges S, Stiles RG, Roberson JR (1994) Appearance of septic hip prostheses on plain radiographs. AJR Am J Roentgenol 163:377–380

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  146. 146.

    Math KR, Zaidi SF, Petchprapa C, Harwin SF (2006) Imaging of total knee arthroplasty. Semin Musculoskelet Radiol 10:47–63

    PubMed  Article  PubMed Central  Google Scholar 

  147. 147.

    Tagliafico A, Bignotti B, Rossi F, Sconfienza LM, Messina C, Martinoli C (2017) Ultrasound of the hip joint, soft tissues, and nerves. Semin Musculoskelet Radiol 21:582–588

    PubMed  Article  PubMed Central  Google Scholar 

  148. 148.

    Sdao S, Orlandi D, Aliprandi A et al (2014) The role of ultrasonography in the assessment of peri-prosthetic hip complications. J Ultrasound 18:245–250

    PubMed  PubMed Central  Article  Google Scholar 

  149. 149.

    Van Holsbeeck MT, Eyler WR, Sherman LS et al (1994) Detection of infection in loosened hip prostheses: efficacy of sonography. AJR Am J Roentgenol 163:381–384

    PubMed  Article  PubMed Central  Google Scholar 

  150. 150.

    Weybright PN, Jacobson JA, Murry KH et al (2003) Limited effectiveness of sonography in revealing hip joint effusion: preliminary results in 21 adult patients with native and postoperative hips. AJR Am J Roentgenol 181:215–218

    PubMed  Article  PubMed Central  Google Scholar 

  151. 151.

    Cyteval C, Hamm V, Sarrabère MP, Lopez FM, Maury P, Taourel P (2002) Painful infection at the site of hip prosthesis: CT imaging. Radiology. 224:477–483

    PubMed  Article  PubMed Central  Google Scholar 

  152. 152.

    Cahir JG, Toms AP, Marshall TJ, Wimhurst J, Nolan J (2007) CT and MRI of hip arthroplasty. Clin Radiol 62:1163–1171

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  153. 153.

    Roth TD, Maertz NA, Parr JA, Buckwalter KA, Choplin RH (2012) CT of the hip prosthesis: appearance of components, fixation, and complications. Radiographics. 32:1089–1107

    PubMed  Article  Google Scholar 

  154. 154.

    Talbot BS, Weinberg EP (2016) MR imaging with metal-suppression sequences for evaluation of total joint arthroplasty. Radiographics. 36:209–225

    PubMed  Article  Google Scholar 

  155. 155.

    Sneag DB, Bogner EA, Potter HG (2015) Magnetic resonance imaging evaluation of the painful total knee arthroplasty. Semin Musculoskelet Radiol 19:40–48

    PubMed  Article  Google Scholar 

  156. 156.

    Aliprandi A, Sconfienza LM, Randelli F, Bandirali M, Di Leo G, Sardanelli F (2012) Magnetic resonance imaging of painful total hip replacement: detection and characterisation of periprosthetic fluid collection and interobserver reproducibility. Radiol Med 117:85–95

    CAS  PubMed  Article  Google Scholar 

  157. 157.

    Aliprandi A, Sconfienza LM, Randelli P et al (2011) Magnetic resonance imaging of the knee after medial unicompartmental arthroplasty. Eur J Radiol 80:e416–e421

    PubMed  Google Scholar 

  158. 158.

    White LM, Kim JK, Mehta M et al (2000) Complications of total hiparthroplasty: MR imaging-initial experience. Radiology. 215:254–262

    CAS  PubMed  Article  Google Scholar 

  159. 159.

    Hayter CL, Koff MF, Shah P et al (2011) MRI after arthroplasty: comparison of MAVRIC and conventional fast spin-echo techniques. AJR Am J Roentgenol 197:W405–W411

    PubMed  Article  Google Scholar 

  160. 160.

    He C, Lu Y, Jiang M, Feng J, Wang Y, Liu Z (2014) Clinical value of optimized magnetic resonance imaging for evaluation of patients with painful hip arthroplasty. Chin Med J (Engl) 127:3876–3880

    Google Scholar 

  161. 161.

    Wong MY, Beadsmoore C, Toms A, Smith T, Donell S (2012) Does 99mTc-MDP bonescintigraphy add to the investigation of patients with symptomatic unicompartmental knee replacement? Knee. 19:592–596

    PubMed  Article  Google Scholar 

  162. 162.

    Ikeuchi M, Okanoue Y, Izumi M et al (2013) Diagnostic value of triple-phase bone scintigraphy for the diagnosis of infection around antibiotic-impregnated cement spacers. Springerplus. 27(2):401

    Article  Google Scholar 

  163. 163.

    Nagoya S, Kaya M, Sasaki M, Tateda K, Yamashita T (2008) Diagnosis ofperi-prosthetic infection at the hip using triple-phase bone scintigraphy. J Bone Joint Surg Br 90:140–144

    CAS  PubMed  Article  Google Scholar 

  164. 164.

    Volpe L, Indelli PF, Latella L, Poli P, Yakupoglu J, Marcucci M (2015) Periprosthetic joint infections: a clinical practice algorithm. Joints. 13(2):169–174

    Google Scholar 

  165. 165.

    Trevail C, Ravindranath-Reddy P, Sulkin T, Bartlett G (2016) An evaluation of the role of nuclear medicine imaging in the diagnosis of periprosthetic infections of the hip. Clin Radiol 71:211–219

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  166. 166.

    Ouyang Z, Li H, Liu X, Zhai Z, Li X (2014) Prosthesis infection: diagnosis after total joint arthroplasty with three-phase bone scintigraphy. Ann Nucl Med 28:994–1003

    PubMed  Article  PubMed Central  Google Scholar 

  167. 167.

    Glaudemans AW, de Vries EF, Vermeulen LE, Slart RH, Dierckx RA, Signore A (2013) A large retrospective single-centre study to define the best image acquisition protocols and interpretation criteria for white blood cell scintigraphy with99mTc-HMPAO-labelled leucocytes in musculoskeletal infections. Eur J Nucl Med Mol Imaging 40:1760–1769

    PubMed  Article  PubMed Central  Google Scholar 

  168. 168.

    Lima AL, Oliveira PR, Carvalho VC, Saconi ES, Cabrita HB, Rodrigues MB (2013) Periprosthetic joint infections. Interdiscip Perspect Infect Dis 2013:542796

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  169. 169.

    Love C, Marwin SE, Palestro CJ (2009) Nuclear medicine and the infected joint replacement. Semin Nucl Med 39:66–78

    PubMed  Article  PubMed Central  Google Scholar 

  170. 170.

    Temmerman OP, Raijmakers PG, Berkhof J et al (2006) Diagnostic accuracy and interobserver variability of plain radiography, subtraction arthrography, nuclear arthrography, and bone scintigraphy in the assessment of aseptic femoral component loosening. Arch Orthop Trauma Surg 126:316–323

    PubMed  Article  PubMed Central  Google Scholar 

  171. 171.

    Jamar F, Buscombe J, Chiti A et al (2013) EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med 54:647–658

    PubMed  Article  Google Scholar 

  172. 172.

    Vesco L, Boulahdour H, Hamissa S et al (1999) The value of combined radionuclide and magnetic resonance imaging in the diagnosis and conservative management of minimal or localized osteomyelitis of the foot in diabetic patients. Metabolism. 48:922–927

    CAS  PubMed  Article  Google Scholar 

  173. 173.

    Newman LG, Waller J, Palestro CJ et al (1991) Unsuspected osteomyelitis in diabetic foot ulcers. Diagnosis and monitoring by leukocyte scanning with indium 111 oxyquinoline. JAMA. 266:1246–1251

    CAS  PubMed  Article  Google Scholar 

  174. 174.

    Chik KK, Magee MA, Bruce WJ et al (1996) Tc-99m stannous colloid-labeled leukocyte scintigraphy in the evaluation of the painful arthroplasty. Clin Nucl Med 21:838–843

    CAS  PubMed  Article  Google Scholar 

  175. 175.

    Kim HO, Na SJ, Oh SJ et al (2014) Usefulness of adding SPECT/CT to 99mTc-hexamethylpropylene amine oxime (HMPAO)-labeled leukocyte imaging for diagnosing prosthetic joint infections. J Comput Assist Tomogr 38:313–319

    PubMed  Article  PubMed Central  Google Scholar 

  176. 176.

    Pelosi E, Baiocco C, Pennone M et al (2004) 99mTc-HMPAO-leukocyte scintigraphy in patients with symptomatic total hip or knee arthroplasty: improved diagnostic accuracy by means of semiquantitative evaluation. J Nucl Med 45:438–444

    PubMed  PubMed Central  Google Scholar 

  177. 177.

    Signore A, Jamar F, Israel O, Buscombe J, Martin-Comin J, Lazzeri E (2018) Clinical indications, image acquisition and data interpretation for white blood cells and anti-granulocyte monoclonal antibody scintigraphy: an EANM procedural guideline. Eur J Nucl Med Mol Imaging 45:1816–1831

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  178. 178.

    Gemmel F, Van den Wyngaert H, Love C, Welling MM, Gemmel P, Palestro CJ (2012) Prosthetic joint infections: radionuclide state-of-the-art imaging. Eur J Nucl Med Mol Imaging 39:892–909

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  179. 179.

    Love C, Marwin SE, Tomas MB et al (2004) Diagnosing infection in the failed joint replacement: a comparison of coincidence detection 18F-FDG and 111In-labeled leukocyte/99mTc-sulfur colloid marrow imaging. J Nucl Med 45:1864–1871

    PubMed  PubMed Central  Google Scholar 

  180. 180.

    Simonsen L, Buhl A, Oersnes T, Duus B (2007) White blood cell scintigraphy for differentiation of infection and aseptic loosening: a retrospective study of 76 painful hip prostheses. Acta Orthop 78:640–647

    PubMed  Article  PubMed Central  Google Scholar 

  181. 181.

    Mulamba L, Ferrant A, Leners N, de Nayer P, Rombouts JJ, Vincent A (1983) Indium-111leucocyte scanning in the evaluation of painful hip arthroplasty. Acta Orthop Scand 54:695–697

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  182. 182.

    Palestro CJ, Kim CK, Swyer AJ, Capozzi JD, Solomon RW, Goldsmith SJ (1990) Total-hiparthroplasty: periprosthetic indium-111-labeled leukocyte activity and complementary technetium-99m-sulfur colloid imaging in suspected infection. J Nucl Med 31:1950–1955

    CAS  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Palestro CJ, Love C, Tronco GG, Tomas MB, Rini JN (2006) Combined labeled leukocyte and technetium 99m sulfur colloid bone marrow imaging for diagnosing musculoskeletal infection. Radiographics. 26:859–870

    PubMed  Article  PubMed Central  Google Scholar 

  184. 184.

    Palestro CJ, Swyer AJ, Kim CK, Goldsmith SJ (1991) Infected knee prosthesis: diagnosis with In-111 leukocyte, Tc-99m sulfur colloid, and Tc-99m MDP imaging. Radiology. 179:645–648

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  185. 185.

    El Espera I, Blondet C, Moullart V et al (2004) The usefulness of 99mTc sulfur colloid bone marrow scintigraphy combined with 111In leucocyte scintigraphy in prosthetic joint infection. Nucl Med Commun 25:171–175

    PubMed  Article  PubMed Central  Google Scholar 

  186. 186.

    Pakos EE, Trikalinos TA, Fotopoulos AD, Ioannidis JP (2007) Prosthesis infection: diagnosis after total joint arthroplasty with antigranulocyte scintigraphy with 99mTc-labeled monoclonal antibodies--a meta-analysis. Radiology. 242:101–108

    PubMed  Article  PubMed Central  Google Scholar 

  187. 187.

    Xing D, Ma X, Ma J, Wang J, Chen Y, Yang Y (2013) Use of anti-granulocyte scintigraphy with 99mTc-labeled monoclonal antibodies for the diagnosis of periprosthetic infection in patients after total joint arthroplasty: a diagnostic meta-analysis. PLoS One 26(8):e69857

    Article  CAS  Google Scholar 

  188. 188.

    Sousa R, Massada M, Pereira A, Fontes F, Amorim I, Oliveira A (2011) Diagnostic accuracy of combined 99mTc-sulesomab and 99mTc-nanocolloid bone marrow imaging in detecting prosthetic joint infection. Nucl Med Commun 32:834–839

    PubMed  Article  PubMed Central  Google Scholar 

  189. 189.

    Filippi L, Schillaci O (2006) Usefulness of hybrid SPECT/CT in 99mTc-HMPAO-labeledleukocyte scintigraphy for bone and joint infections. J Nucl Med 47:1908–1913

    CAS  PubMed  PubMed Central  Google Scholar 

  190. 190.

    Vanquickenborne B, Maes A, Nuyts J et al (2003) The value of (18)FDG-PET for the detection of infected hip prosthesis. Eur J Nucl Med Mol Imaging 30:705–715

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  191. 191.

    Pill SG, Parvizi J, Tang PH et al (2006) Comparison of fluorodeoxyglucose positron emission tomography and(111)indium-white blood cell imaging in the diagnosis of periprosthetic infection of the hip. J Arthroplasty 21(6 Suppl 2):91–97

    PubMed  Article  PubMed Central  Google Scholar 

  192. 192.

    Glaudemans AW, Prandini N, DI Girolamo M et al (2018) Hybrid imaging of musculoskeletal infections. Q J Nucl Med Mol Imaging 62:3–1

    PubMed  PubMed Central  Google Scholar 

  193. 193.

    European Union, directive 2013/59/EURATOM. https://ec.europa.eu/energy/sites/ener/files/documents/CELEX-32013L0059-EN-TXT.pdf. Accessed on 30 Jan 2019

  194. 194.

    Messina C, Banfi G, Aliprandi A et al (2016) Ultrasound guidance to perform intra-articular injection of gadolinium-based contrast material for magnetic resonance arthrography as an alternative to fluoroscopy: the time is now. Eur Radiol 26:1221–1225

    Article  Google Scholar 

  195. 195.

    European Society of Radiology, EuroSafe Imaging Campaign. http://www.eurosafeimaging.org/ Accessed on 30 Jan 2019

  196. 196.

    European Association of Nuclear Medicine. Radiation protection education program. https://www.eanm.org/content-eanm/uploads/2016/12/EANM_2016-TG_RadiationProtection_lowres.pdf Accessed on 30 Jan 2019

Download references

Acknowledgements

The original guidelines published on the European Journal of Nuclear Medicine and Molecular Imaging [16, 17] were drafted by the representatives of the respective Scientific Societies: Luca Maria Sconfienza, Victor Cassar-Pullicino, Klaus Wortler, and Filip MHM Vanhoenacker are delegates of the European Society of Radiology (ESR); Andor W.J.M. Glaudemans, Olivier Gheysens, and Alberto Signore are delegates of the European Association of Nuclear Medicine (EANM); Paul C. Jutte, Olivier Borens, and Heinz Winkler are delegates of the European Bone and Joint Infection Society (EBJIS); Nicola Petrosillo, Maria Adriana Cataldo, and Andrej Trampuz are delegates of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID).

Funding

The authors state that this work has not received any funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luca Maria Sconfienza.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Luca Maria Sconfienza.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Not applicable.

Ethical approval

Institutional Review Board approval was not required because this study does not involve patients directly.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sconfienza, L.M., Signore, A., Cassar-Pullicino, V. et al. Diagnosis of peripheral bone and prosthetic joint infections: overview on the consensus documents by the EANM, EBJIS, and ESR (with ESCMID endorsement). Eur Radiol 29, 6425–6438 (2019). https://doi.org/10.1007/s00330-019-06326-1

Download citation

Keywords

  • Osteomyelitis
  • Prosthesis-related infections
  • Clinical laboratory techniques
  • Radiology
  • Nuclear medicine