Skip to main content
Log in

Follow-up MRI in multiple sclerosis patients: automated co-registration and lesion color-coding improves diagnostic accuracy and reduces reading time

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

In multiple sclerosis (MS), the heterogeneous and numerous appearances of lesions may impair diagnostic accuracy. This study investigates if a combined automated co-registration and lesion color-coding method (AC) improves assessment of MS follow-up MRI compared with conventional reading (CR).

Methods

We retrospectively assessed 70 follow-up MRI of 53 patients. Heterogeneous datasets of diverse scanners and institutions were used. Two readers determined presence of (a) progression, (b) regression, (c) mixed change, or (d) stable disease between the two examinations using corresponding FLAIR sequences in CR and AC-assisted reading. Consensus reference reading was provided by two blinded radiologists. Kappa statistics tested interrater agreement, McNemar’s test dichotomous variables, and Wilcoxon’s test continuous variables (statistical significance p ≤ 0.05).

Results

The cohort comprised 41 female and 12 male patients with a mean age of 40 (± 14) years. Average rating time was reduced from 78 (± 36) to 44 (±22) s with the AC approach (p < 0.001). The time needed to start and match datasets with AC was 14 (± 1) s. Compared with CR, AC improved interrater agreement, both between raters (0.52 vs. 0.67) and between raters and consensus reference reading (0.47/0.5 vs. 0.83/0.78). Compared with CR, the diagnostic accuracy increased from 67 to 90% (reader 1, p < 0.01) and from 70 to 87% (reader 2, p < 0.05) in the AC-assisted reading.

Conclusions

Compared with CR, automated co-registration and lesion color-coding of MS-associated FLAIR-lesions in follow-up MRI increased diagnostic accuracy and reduced the time required for follow-up evaluation significantly. The AC algorithm therefore appears to be helpful to improve MS follow-up assessments in clinical routine.

Key Points

Automated co-registration and lesion color-coding increases diagnostic accuracy in the assessment of MRI follow-up examinations in patients with multiple sclerosis.

Automated co-registration and lesion color-coding reduces reading time of MRI follow-up examinations in patients with multiple sclerosis.

Automated co-registration and lesion color-coding improved interrater agreement in the assessment of MRI follow-up examinations in patients with multiple sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AC:

Automated co-registration and lesion color-coding image reading approach

CR:

Conventional reading

FLAIR:

Fluid-attenuated inversion recovery

MRI:

Magnetic resonance imaging

MS:

Multiple sclerosis

PACS:

Picture archiving and communication system

RIS:

Radiological information system

SD:

Standard deviation.

References

  1. Karussis D (2014) The diagnosis of multiple sclerosis and the various related demyelinating syndromes: a critical review. J Autoimmun 48-49:134–142

    Article  CAS  PubMed  Google Scholar 

  2. Ramagopalan SV, Sadovnick AD (2011) Epidemiology of multiple sclerosis. Neurol Clin 29(2):207–217

    Article  PubMed  Google Scholar 

  3. Dilokthornsakul P, Valuck RJ, Nair KV, Corboy JR, Allen RR, Campbell JD (2016) Multiple sclerosis prevalence in the United States commercially insured population. Neurology 86(11):1014–1021

    Article  PubMed  PubMed Central  Google Scholar 

  4. Simpson S Jr, Blizzard L, Otahal P, van der Mei I, Taylor B (2011) Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J Neurol Neurosurg Psychiatry 82(10):1132–1141

    Article  Google Scholar 

  5. Danelakis A, Theoharis T, Verganelakis DA (2018) Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging. Comput Med Imaging Graph 70:83–100

    Article  PubMed  Google Scholar 

  6. Gramsch C, Nensa F, Kastrup O et al (2015) Diagnostic value of 3D fluid attenuated inversion recovery sequence in multiple sclerosis. Acta Radiol 56(5):622–627

    Article  PubMed  Google Scholar 

  7. Thompson AJ, Banwell BL, Barkhof F et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17(2):162–173

    Article  PubMed  Google Scholar 

  8. Katz Sand IB, Lublin FD (2013) Diagnosis and differential diagnosis of multiple sclerosis. Continuum (Minneap Minn) 19(4 Multiple Sclerosis):922–943

    Google Scholar 

  9. Battaglini M, Rossi F, Grove RA et al (2014) Automated identification of brain new lesions in multiple sclerosis using subtraction images. J Magn Reson Imaging 39(6):1543–1549

    Article  PubMed  Google Scholar 

  10. Patel N, Horsfield MA, Banahan C et al (2017) Detection of focal longitudinal changes in the brain by subtraction of MR images. AJNR Am J Neuroradiol 38(5):923–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Galletto Pregliasco A, Collin A, Guéguen A et al (2018) Improved detection of new MS lesions during follow-up using an automated MR coregistration-fusion method. AJNR Am J Neuroradiol 39(7):1226–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sweeney EM, Shinohara RT, Shea CD, Reich DS, Crainiceanu CM (2013) Automatic lesion incidence estimation and detection in multiple sclerosis using multisequence longitudinal MRI. AJNR Am J Neuroradiol 34(1):68–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roura E, Oliver A, Cabezas M et al (2015) A toolbox for multiple sclerosis lesion segmentation. Neuroradiology 57(10):1031–1043

    Article  PubMed  Google Scholar 

  14. García-Lorenzo D, Francis S, Narayanan S, Arnold DL, Collins DL (2013) Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Med Image Anal 17(1):1–18

    Article  PubMed  Google Scholar 

  15. Horsfield MA, Rocca MA, Pagani E et al (2016) Estimating brain lesion volume change in multiple sclerosis by subtraction of magnetic resonance images. J Neuroimaging 26(4):395–402

    Article  PubMed  Google Scholar 

  16. Cabezas M, Corral JF, Oliver A et al (2016) Improved automatic detection of new T2 lesions in multiple sclerosis using deformation fields. AJNR Am J Neuroradiol. https://doi.org/10.3174/ajnr.A4829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jain S, Sima DM, Ribbens A et al (2015) Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images. Neuroimage Clin 8:367–375

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tan IL, van Schijndel RA, Fazekas F et al (2002) Image registration and subtraction to detect active T(2) lesions in MS: an interobserver study. J Neurol 249(6):767–773

    Article  PubMed  Google Scholar 

  19. Ganiler O, Oliver A, Diez Y et al (2014) A subtraction pipeline for automatic detection of new appearing multiple sclerosis lesions in longitudinal studies. Neuroradiology 56(5):363–374

    Article  PubMed  Google Scholar 

  20. Laukamp KR, Thiele F, Shakirin G et al (2018) Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI. Eur Radiol. https://doi.org/10.1007/s00330-018-5595-8

    Article  PubMed  PubMed Central  Google Scholar 

  21. Salem M, Cabezas M, Valverde S et al (2018) A supervised framework with intensity subtraction and deformation field features for the detection of new T2-w lesions in multiple sclerosis. Neuroimage Clin 17:607–615

    Article  PubMed  Google Scholar 

  22. Nguyen TD, Zhang S, Gupta A, Zhao Y, Gauthier SA, Wang Y (2018) Fast and robust unsupervised identification of MS lesion change using the statistical detection of changes algorithm. AJNR Am J Neuroradiol 39(5):830–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Heerden J, Rawlinson D, Zhang AM et al (2015) Improving multiple sclerosis plaque detection using a semiautomated assistive approach. AJNR Am J Neuroradiol 36(8):1465–1471

    Article  PubMed  PubMed Central  Google Scholar 

  24. Castellino RA (2005) Computer aided detection (CAD): an overview. Cancer Imaging 5:17–19

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bilello M, Arkuszewski M, Nasrallah I, Wu X, Erus G, Krejza J (2012) Multiple sclerosis lesions in the brain: computer-assisted assessment of lesion load dynamics on 3D FLAIR MR images. Neuroradiol J 25(1):17–21

    Article  CAS  PubMed  Google Scholar 

  26. Krauss W, Gunnarsson M, Nilsson M, Thunberg P (2017) Conventional and synthetic MRI in multiple sclerosis: a comparative study. Eur Radiol 28(4):1692–1700

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang W, van Heerden J, Tacey MA, Gaillard F (2017) Neuroradiologists compared with non-neuroradiologists in the detection of new multiple sclerosis plaques. AJNR Am J Neuroradiol 38(7):1323–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chokshi FH, Hughes DR, Wang JM, Mullins ME, Hawkins CM, Duszak R Jr (2015) Diagnostic radiology resident and fellow workloads: a 12-year longitudinal trend analysis using national Medicare aggregate claims data. J Am Coll Radiol 12(7):664–669

    Article  PubMed  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Zopfs.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Jan Borggrefe.

Conflict of interest

The authors of this manuscript declare relationships with the following companies:

Jan Borggrefe received speaker honoraria from Philips.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• Retrospective

• Diagnostic or prognostic study

• Performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zopfs, D., Laukamp, K.R., Paquet, S. et al. Follow-up MRI in multiple sclerosis patients: automated co-registration and lesion color-coding improves diagnostic accuracy and reduces reading time. Eur Radiol 29, 7047–7054 (2019). https://doi.org/10.1007/s00330-019-06273-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-019-06273-x

Keywords

Navigation