Skip to main content

Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT?



To evaluate the efficiency of radiomics model on CT images of intratumoral and peritumoral lung parenchyma for preoperative prediction of lymph node (LN) metastasis in clinical stage T1 peripheral lung adenocarcinoma patients.


Three hundred sixty-six peripheral lung adenocarcinoma patients with clinical stage T1 were evaluated using five CT scanners. For each patient, two volumes of interest (VOIs) on CT were defined as the gross tumor volume (GTV) and the peritumoral volume (PTV, 1.5 cm around the tumor). One thousand nine hundred forty-six radiomic features were obtained from each VOI, and then refined for reproducibility and redundancy. The refined features were investigated for usefulness in building radiomic signatures by mRMR feature ranking method and LASSO classifier. Multivariable logistic regression analysis was used to develop a radiomic nomogram incorporating the radiomic signature and clinical parameters. The prediction performance was evaluated on the validation cohort.


The radiomic signatures using the features of GTV and PTV showed a good ability in predicting LN metastasis with an AUC of 0.829 (95% CI, 0.745–0.913) and 0.825 (95% CI, 0.733–0.918), respectively. By incorporating the features of GTV and PTV, the AUC of radiomic signature increased to 0.843 (95% CI, 0.770–0.916). The AUC of radiomic nomogram was 0.869 (95% CI, 0.800–0.938).


Radiomic signatures of GTV and PTV both had a good prediction ability in the prediction of LN metastasis, and there is no significant difference of AUC between the two groups. The proposed nomogram can be conveniently used to facilitate the preoperative prediction of LN metastasis in T1 peripheral lung adenocarcinomas.

Key Points

• Radiomics from peritumoral lung parenchyma increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT.

• A radiomic nomogram was developed and validated to predict LN metastasis.

• Different scan parameters on CT showed that radiomics signature had good predictive performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4



Gross and peritumoral volume


Gross tumor volume


Least absolute shrinkage and selection operator


Lymph node


Minimum redundancy maximum relevance


Peritumoral volume


  1. National Lung Screening Trial Research Team, Aberle DR, Adams AM et al (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365:395–409

  2. Jacobs CD, Jafari ME (2017) Early results of lung cancer screening and radiation dose assessment by low-dose CT at a community hospital. Clin Lung Cancer 18:e327–e331

    Article  PubMed  Google Scholar 

  3. Luo X, Zheng S, Liu Q et al (2017) Should nonsmokers be excluded from early lung cancer screening with low-dose spiral computed tomography? Community-based practice in Shanghai. Transl Oncol 10:485–490

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ghanem S, El Bitar S, Hossri S, Weerasinghe C, Atallah JP (2017) What we know about surgical therapy in early-stage non-small-cell lung cancer: a guide for the medical oncologist. Cancer Manag Res 9:267–278

  5. Liu T, Liu H, Li Y (2015) Systematic lymph node dissection is necessary for T1a non-small cell lung cancer. Asia Pac J Clin Oncol 11:49–53

    Article  PubMed  Google Scholar 

  6. Donington JS (2015) Survival after sublobar resection versus lobectomy for clinical stage IA lung cancer: analysis from the National Cancer Database. J Thorac Oncol 10:1513–1514

    Article  PubMed  Google Scholar 

  7. Okada M, Koike T, Higashiyama M, Yamato Y, Kodama K, Tsubota N (2006) Radical sublobar resection for small-sized non-small cell lung cancer: a multicenter study. J Thorac Cardiovasc Surg 132:769–775

    Article  PubMed  Google Scholar 

  8. Sagawa M, Oizumi H, Suzuki H et al (2018) A prospective 5-year follow-up study after limited resection for lung cancer with ground-glass opacity. Eur J Cardiothorac Surg 53:849–856

    Article  PubMed  Google Scholar 

  9. Cao C, Chandrakumar D, Gupta S, Yan TD, Tian DH (2015) Could less be more?-A systematic review and meta-analysis of sublobar resections versus lobectomy for non-small cell lung cancer according to patient selection. Lung Cancer 89:121–132

    Article  PubMed  Google Scholar 

  10. Park JE, Kim HS (2018) Radiomics as a quantitative imaging biomarker: practical considerations and the current standpoint in neuro-oncologic studies. Nucl Med Mol Imaging 52:99–108

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577

    Article  PubMed  Google Scholar 

  13. Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762

    Article  PubMed  Google Scholar 

  14. Carvalho S, Leijenaar RTH, Troost EGC et al (2018) 18F-fluorodeoxyglucose positron-emission tomography (FDG-PET)-Radiomics of metastatic lymph nodes and primary tumor in non-small cell lung cancer (NSCLC) - a prospective externally validated study. PLoS One 13:e0192859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kirienko M, Cozzi L, Antunovic L et al (2017) Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery. Eur J Nucl Med Mol Imaging.

  16. Choi W, Oh JH, Riyahi S et al (2018) Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer. Med Phys 45:1537–1549

    Article  PubMed  Google Scholar 

  17. Ferreira Junior JR, Koenigkam-Santos M, Cipriano FEG, Fabro AT, Azevedo-Marques PM (2018) Radiomics-based features for pattern recognition of lung cancer histopathology and metastases. Comput Methods Programs Biomed 159:23–30

    Article  PubMed  Google Scholar 

  18. Polyak K, Haviv I, Campbell IG (2009) Co-evolution of tumor cells and their microenvironment. Trends Genet 25:30–38

    Article  CAS  PubMed  Google Scholar 

  19. Prasanna P, Patel J, Partovi S, Madabhushi A, Tiwari P (2017) Erratum to: Radiomic features from the peritumoral brain parenchyma on treatment-naive multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: preliminary findings. Eur Radiol 27:4198–4199

    Article  PubMed  Google Scholar 

  20. Faget J, Groeneveld S, Boivin G et al (2017) Neutrophils and snail orchestrate the establishment of a pro-tumor microenvironment in lung cancer. Cell Rep 21:3190–3204

    Article  CAS  PubMed  Google Scholar 

  21. Gu Y, She Y, Xie D et al (2018) A texture analysis-based prediction model for lymph node metastasis in stage IA lung adenocarcinoma. Ann Thorac Surg.

  22. Zhong Y, Yuan M, Zhang T, Zhang YD, Li H, Yu TF (2018) Radiomics approach to prediction of occult mediastinal lymph node metastasis of lung adenocarcinoma. AJR Am J Roentgenol.

  23. Lardinois D, De Leyn P, Van Schil P et al (2006) ESTS guidelines for intraoperative lymph node staging in non-small cell lung cancer. Eur J Cardiothorac Surg 30:787–792

    Article  PubMed  Google Scholar 

  24. Travis WD, Brambilla E, Noguchi M et al (2011) International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society: international multidisciplinary classification of lung adenocarcinoma: executive summary. Proc Am Thorac Soc 8:381–385

    Article  PubMed  Google Scholar 

  25. Carter BW, Lichtenberger JP 3rd, Benveniste MK et al (2018) Revisions to the TNM staging of lung cancer: rationale, significance, and clinical application. Radiographics 38:374–391

    Article  PubMed  Google Scholar 

  26. Prenzel KL, Mönig SP, Sinning JM et al (2003) Lymph node size and metastatic infiltration in non-small cell lung cancer. Chest 123:463–467

  27. Rocco G (2018) A new instrument for intraoperative visualization of safe surgical margins for small lung nodules. Semin Thorac Cardiovasc Surg 30:92-94

    Article  PubMed  Google Scholar 

  28. Mohiuddin K, Haneuse S, Sofer T et al (2014) Relationship between margin distance and local recurrence among patients undergoing wedge resection for small (</=2 cm) non-small cell lung cancer. J Thorac Cardiovasc Surg 147:1169–1175 discussion 1175-1167

    Article  PubMed  Google Scholar 

  29. van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gillies RJ, Kinahan PE, Hricak H (2015) Radiomics: images are more than pictures, they are data. Radiology 278:563–577

    Article  PubMed  Google Scholar 

  31. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ (2015) Machine learning methods for quantitative radiomic biomarkers. Sci Rep 5:13087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Parmar C, Grossmann P, Rietveld D, Rietbergen MM, Lambin P, Aerts HJ (2015) Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front Oncol 5:272

    Article  PubMed  PubMed Central  Google Scholar 

  33. Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–1238

    Article  PubMed  Google Scholar 

  34. Huang YQ, Liang CH, He L et al (2016) Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol 34:2157–2164

    Article  PubMed  Google Scholar 

  35. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    Article  CAS  PubMed  Google Scholar 

  36. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    Article  CAS  PubMed  Google Scholar 

  37. Wu J, Sun X, Wang J et al (2017) Identifying relations between imaging phenotypes and molecular subtypes of breast cancer: model discovery and external validation. J Magn Reson Imaging 46:1017–1027

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fan L, Fang M, Li Z et al (2019) Radiomics signature: a biomarker for the preoperative discrimination of lung invasive adenocarcinoma manifesting as a ground-glass nodule. Eur Radiol 29:889–897

    Article  PubMed  Google Scholar 

  39. Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39:561–577

    CAS  PubMed  Google Scholar 

  40. Cho S, Song IH, Yang HC, Kim K, Jheon S (2013) Predictive factors for node metastasis in patients with clinical stage I non-small cell lung cancer. Ann Thorac Surg 96:239–245

    Article  PubMed  Google Scholar 

  41. Wang X, Zheng L, Zhang SY et al (2009) Risk factor analysis of mediastinal lymph node metastasis in non-small cell lung cancer patients and the strategy of mediastinoscopy prior to surgery. Zhonghua Zhong Liu Za Zhi 31:456–459

    PubMed  Google Scholar 

  42. Zhao F, Zhou Y, Ge PF et al (2017) A prediction model for lymph node metastases using pathologic features in patients intraoperatively diagnosed as stage I non-small cell lung cancer. BMC Cancer 17:267

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tsutani Y, Miyata Y, Nakayama H et al (2012) Prediction of pathologic node-negative clinical stage IA lung adenocarcinoma for optimal candidates undergoing sublobar resection. J Thorac Cardiovasc Surg 144:1365–1371

    Article  PubMed  Google Scholar 

  44. Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006

    Article  CAS  PubMed  Google Scholar 

  45. Huang Y, Liu Z, He L et al (2016) Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (i or ii) non—small cell lung cancer. Radiology 281:947–957

    Article  PubMed  Google Scholar 

  46. Wu W, Parmar C, Grossmann P et al (2016) Exploratory study to identify radiomics classifiers for lung cancer histology. Front Oncol 6:71

    PubMed  PubMed Central  Google Scholar 

  47. Liu Y, Kim J, Balagurunathan Y et al (2018) Prediction of pathological nodal involvement by CT-based radiomic features of the primary tumor in patients with clinically node-negative peripheral lung adenocarcinomas. Med Phys 45:2518–2526

    Article  PubMed  Google Scholar 

  48. Schisterman EF, Perkins NJ, Liu A, Bondell H (2005) Optimal cut-point and its corresponding Youden index to discriminate individuals using pooled blood samples. Epidemiology 16:73–81

    Article  PubMed  Google Scholar 

  49. Wei DM, Chen WJ, Meng RM et al (2018) Augmented expression of Ki-67 is correlated with clinicopathological characteristics and prognosis for lung cancer patients: an up-dated systematic review and meta-analysis with 108 studies and 14,732 patients. Respir Res 19:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Seto K, Kuroda H, Yoshida T et al (2018) Higher frequency of occult lymph node metastasis in clinical N0 pulmonary adenocarcinoma with ALK rearrangement. Cancer Manag Res 10:2117–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jian J, Xiong F, Xia W et al (2018) Fully convolutional networks (FCNs)-based segmentation method for colorectal tumors on T2-weighted magnetic resonance images. Australas Phys Eng Sci Med 41:393–401

    Article  PubMed  Google Scholar 

  52. Huang L, Xia W, Zhang B, Qiu B, Gao X (2017) MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images. Comput Methods Programs Biomed 143:67–74

    Article  PubMed  Google Scholar 

Download references


The National Key Research and Development Program of China for Intergovernmental Cooperation (2016YFE0103000), Shanghai Municipal Commission of Health and Family Planning Program (grant numbers 20184Y0037 and 2018ZHYL0101).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Shiyuan Liu or Xin Gao.

Ethics declarations


The scientific guarantor of this publication is Prof. Xin Gao.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

This retrospective analysis was approved by the ethical review board of our hospital (No. 2018SL049).


• retrospective

• diagnostic or prognostic study

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 50.3 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhao, X., Li, Q. et al. Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT?. Eur Radiol 29, 6049–6058 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Lung
  • Adenocarcinoma
  • Radiomics
  • Lymph node
  • Metastasis