Skip to main content

Correlation of native T1 mapping with right ventricular function and pulmonary haemodynamics in patients with chronic thromboembolic pulmonary hypertension before and after balloon pulmonary angioplasty

Abstract

Objectives

The aim of this study was to assess native T1 mapping in patients with inoperable chronic thromboembolic pulmonary hypertension (CTEPH) before and 6 months after balloon pulmonary angioplasty (BPA) and compare the results with right heart function and pulmonary haemodynamics.

Methods

Magnetic resonance imaging at 1.5 T and right heart catheterisation were performed in 21 consecutive inoperable CTEPH patients before and 6 months after BPA. T1 values were measured within the septal myocardium, the upper and lower right ventricular insertion points, and the lateral wall at the basal short-axis section. In addition, the area-adjusted septal native T1 time (AA-T1) was calculated and compared with right ventricular function (RVEF), mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance (PVR).

Results

The mean AA-T1 value decreased significantly after BPA (1,045.8 ± 44.3 ms to 1,012.5 ± 50.4 ms; p < 0.001). Before BPA, native T1 values showed a moderate negative correlation with RVEF (r = -0.61; p = 0.0036) and moderate positive correlations with mPAP (r = 0.59; p < 0.01) and PVR (r = 0.53; p < 0.05); after BPA correlation trends were present (r = -0.21, r = 0.30 and r = 0.35, respectively).

Conclusions

Native T1 values in patients with inoperable CTEPH were significantly lower after BPA and showed significant correlations with RVEF and pulmonary haemodynamics before BPA. Native T1 mapping seems to be indicative of reverse myocardial tissue remodelling after BPA and might therefore have good potential for pre-procedural patient selection, non-invasive therapy monitoring and establishing a prognosis.

Key Points

• BPA is a promising treatment option for patients with inoperable CTEPH

• Native septal T1 values significantly decrease after BPA and show good correlations with right ventricular function and haemodynamics before BPA

• Prognosis and non-invasive therapy monitoring might be supported in the future by native T1 mapping

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

AA-T1:

Area-adjusted native T1 time

BPA:

Balloon pulmonary angioplasty

CMR:

Cardiac magnetic resonance imaging

CTEPH:

Chronic thromboembolic pulmonary hypertension

EDD:

End-diastolic diameter

EDV:

End-diastolic volume

EF:

Ejection fraction

ESD:

End-systolic diameter

ESV:

End-systolic volume

LV:

Left ventricle

mPAP:

Mean pulmonary arterial pressure

PA:

Pulmonary artery

PEA:

Pulmonary endarterectomy

PH:

Pulmonary hypertension

PVR:

Pulmonary vascular resistance

RVEF:

Right ventricular function

RVIP:

Right ventricular insertion point

RV:

Right ventricle

SV:

Stroke volume

References

  1. Hoeper MM, Bogaard HJ, Condliffe R et al (2013) Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 62:42–50

    Article  Google Scholar 

  2. Simonneau G, Gatzoulis MA, Adatia I et al (2013) Updated Clinical Classification of Pulmonary Hypertension. J Am Coll Cardiol 62:34–41

    Article  Google Scholar 

  3. Pepke-Zaba J, Delcroix M, Lang I et al (2011) Chronic thromboembolic pulmonary hypertension (CTEPH). Results from an international prospective registry. Circulation 124:1973–1981

    PubMed  Google Scholar 

  4. Becattini C, Agnelli G, Pesavento R et al (2006) Incidence of chronic thromboembolic pulmonary hypertension after a first episode of pulmonary embolism. Chest 130:172–175

    Article  PubMed  Google Scholar 

  5. Pengo V, Lensing AW, Prins MH et al (2004) Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med 350:2257–2264

    Article  CAS  PubMed  Google Scholar 

  6. Klok FA, van Kralingen KW, van Dijk AP, Heyning FH, Vliegen HW, Huisman MV (2010) Prospective cardiopulmonary screening program to detect chronic thromboembolic pulmonary hypertension in patients after acute pulmonary embolism. Haematologica 95:970–975

    Article  PubMed  PubMed Central  Google Scholar 

  7. Berghaus TM, Barac M, von Scheidt W, Schwaiblmair M (2011) Echocardiographic evaluation for pulmonary hypertension after recurrent pulmonary embolism. Thromb Res 128:e142–e147

    Article  CAS  Google Scholar 

  8. Galiè N, Humbert M, Vachiery JL et al (2016) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37:67–119

    Article  PubMed  Google Scholar 

  9. Lang IM, Pesavento R, Bonderman D, Yuan JX (2013) Risk factors and basic mechanisms of chronic thromboembolic pulmonary hypertension: a current understanding. Eur Respir J 41:462–468

    Article  PubMed  Google Scholar 

  10. Matthews DT, Hemnes AR (2016) Current concepts in the pathogenesis of chronic thromboembolic pulmonary hypertension. Pulm Circ 6:145–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Riedel M, Stanek V, Widimsky J, Prerovsky I (1982) Longterm follow-up of patients with pulmonary thromboembolism: late prognosis and evolution of hemodynamic and respiratory data. Chest 81:151–158

    Article  CAS  PubMed  Google Scholar 

  12. Lewczuk J, Piszko P, Jagas J et al (2001) Prognostic factors in medically treated patients with chronic pulmonary embolism. Chest 119:818–823

    Article  CAS  PubMed  Google Scholar 

  13. Simonneau G, Robbins IM, Beghetti M et al (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54:43–54

    Article  Google Scholar 

  14. Mayer E, Jenkins D, Lindner J et al (2011) Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry. J Thorac Cardiovasc Surg 141:702–710

    Article  PubMed  Google Scholar 

  15. Lankeit M, Krieg V, Hobohm L et al (2017) Pulmonary endarterectomy in chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant. https://doi.org/10.1016/j.healun.2017.06.011

  16. Wirth G, Brüggemann K, Bostel T, Mayer E, Düber C, Kreitner KF (2014) Chronic thromboembolic pulmonary hypertension (CTEPH)—potential role of multidetector-row CT (MD-CT) and MR imaging in the diagnosis and differential diagnosis of the disease. Rofo 186:751–761

    Article  CAS  PubMed  Google Scholar 

  17. Ghofrani HA, D'Armini AM, Grimminger F et al (2013) CHEST-1 Study Group. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med 369:319–329

    Article  CAS  PubMed  Google Scholar 

  18. Simonneau G, D'Armini AM, Ghofrani HA et al (2015) Riociguat for the treatment of chronic thromboembolic pulmonary hypertension: a long-term extension study (CHEST-2). Eur Respir J 45:1293–1302

    Article  CAS  PubMed  Google Scholar 

  19. Simonneau G, D'Armini AM, Ghofrani HA et al (2016) Predictors of long-term outcomes in patients treated with riociguat for chronic thromboembolic pulmonary hypertension: data from the CHEST-2 open-label, randomised, long-term extension trial. Lancet Respir Med 4:372–380

    Article  CAS  PubMed  Google Scholar 

  20. Olsson KM, Wiedenroth CB, Kamp JC et al (2017) Balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension: the initial German experience. Eur Resp J 49:6

    Article  Google Scholar 

  21. Muller DW, Liebetrau C (2016) Percutaneous treatment of chronic thromboembolic pulmonary hypertension (CTEPH). EuroIntervention 12:X35–X43

    Article  PubMed  Google Scholar 

  22. Kreitner KF, Ley S, Kauczor HU et al (2004) Chronic thromboembolic pulmonary hypertension: Pre- and postoperative assessment with breath-hold MR imaging techniques. Radiology 232:535–554

    Article  PubMed  Google Scholar 

  23. Rolf A, Rixe J, Kim WK et al (2014) Right ventricular adaptation to pulmonary pressure load in patients with chronic thromboembolic pulmonary hypertension before and after successful pulmonary endarterectomy--a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 16:96

    Article  PubMed  PubMed Central  Google Scholar 

  24. van Wolferen SA, Marcus JT, Boonstra A et al (2007) Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 28:1250–1257

    Article  PubMed  Google Scholar 

  25. Sato H, Ota H, Sugimura K et al (2016) Balloon pulmonary angioplasty improves biventricular functions and pulmonary flow in chronic thromboembolic pulmonary hypertension. Circ J 80:1470–1477

    Article  PubMed  Google Scholar 

  26. Yamasaki Y, Nagao M, Abe K et al (2017) Balloon pulmonary angioplasty improves interventricular dyssynchrony in patients with inoperable chronic thromboembolic pulmonary hypertension: a cardiac MR imaging study. Int J Cardiovasc Imaging 33:229–239

    Article  PubMed  Google Scholar 

  27. Bull S, White SK, Piechnik SK et al (2013) Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart 99:932–937

    Article  PubMed  Google Scholar 

  28. Lee SP, Lee W, Lee JM et al (2015) Assessment of diffuse myocardial fibrosis by using MR imaging in asymptomatic patients with aortic stenosis. Radiology 274:359–369

    Article  PubMed  Google Scholar 

  29. Dass S, Suttie JJ, Piechnik SK et al (2012) Myocardial tissue characterization using magnetic resonance non contrast T1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging 6:726–733

    Article  Google Scholar 

  30. Bandula S, White SK, Flett AS et al (2013) Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT: validation against histologic findings. Radiology 269:396–403

    Article  PubMed  Google Scholar 

  31. Reiter U, Reiter G, Kovacs G et al (2017) Native myocardial T1 mapping in pulmonary hypertension: correlations with cardiac function and hemodynamics. Eur Radiol 27:157–166

    Article  PubMed  Google Scholar 

  32. Roller FC, Wiedenroth C, Breithecker A et al (2017) Native T1 mapping and extracellular volume fraction measurement for assessment of right ventricular insertion point and septal fibrosis in chronic thromboembolic pulmonary hypertension. Eur Radiol 27:1980–1991

    Article  PubMed  Google Scholar 

  33. Spruijt OA, Vissers L, Boogard HJ, Hofmann MB, Vonk-Noordegraaf A, Marcus JT (2016) Increased native T1-values at the interventricular insertion regions in precapillary pulmonary hypertension. Int J Cardiovasc Imaging 32:451–459

    Article  PubMed  Google Scholar 

  34. García-Álvarez A, García-Lunar I, Pereda D et al (2015) Association of myocardial T1-mapping CMR with hemodynamics and RV performance in pulmonary hypertension. JACC Cardiovasc Imaging 8:76–82

    Article  PubMed  Google Scholar 

  35. Kriechbaum SD, Wiedenroth CB, Wolter JS et al (2017) N-terminal pro-B-type natriuretic peptide for monitoring after balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant. https://doi.org/10.1016/j.healun.2017.12.006

  36. Wiedenroth CB, Olsson KM, Guth S et al (2017) Balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic disease. Pulm Circ. https://doi.org/10.1177/2045893217753122

  37. Roller FC, Harth S, Schneider C, Krombach GA (2015) T1, T2 mapping and extracellular volume fraction (ECV): application, value and further perspectives in myocardial inflammation and cardiomyopathies. Rofo 187:760–770

    Article  CAS  PubMed  Google Scholar 

  38. Kellman P, Wilson JR, Xue H, Ugander M, Arai AE (2012) Extracellular volume fraction mapping inthe myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 14:63

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hinkle DE, Wiersma W, Jurs SG (2003) Applied statistics for the behavioral sciences, 5th edn. Houghton Mifflin, Boston

    Google Scholar 

  40. Aoki T, Sugimura K, Tatebe S et al (2017) Comprehensive evaluation of the effectiveness and safety of balloon pulmonary angioplasty for inoperable chronic thrombo-embolic pulmonary hypertension: long-term effects and procedure-related complications. Eur Heart J 38:3152-3159

  41. Sanz J, Dellegrottaglie S, Kariisa M et al (2007) Prevalence and correlates of septal delayed contrast enhancement in patients with pulmonary hypertension. Am J Cardiol 100:731–735

    Article  PubMed  Google Scholar 

  42. McCann GP, Beek AM, Vonk-Noordegraaf A, van Rossum AC (2005) Delayed contrast-enhanced magnetic resonance imaging in pulmonary arterial hypertension. Circulation 112:e268

    Article  PubMed  Google Scholar 

  43. Assomull RG, Prasad SK, Lyne J et al (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48:1977–1985

    Article  PubMed  Google Scholar 

  44. O’Hanlon R, Grasso A, Roughton M et al (2010) Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 56:867–874

    Article  PubMed  Google Scholar 

  45. Barone-Rochette G, Piérard S, De Meester de Ravenstein C et al (2014) Prognostic significance of LGE by CMR in aortic stenosis patients undergoing valve replacement. J Am Coll Cardiol 64:144–154

    Article  PubMed  Google Scholar 

  46. Krittayaphong R, Saiviroonporn P, Boonyasirinant T, Udompunturak S (2011) Prevalence and prognosis of myocardial scar in patients with known or suspected coronary artery disease and normal wall motion. J Cardiovasc Magn Reson 13:2

    Article  PubMed  PubMed Central  Google Scholar 

  47. Moon JC, Reed E, Sheppard MN et al (2004) The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol 43:2260–2264

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Elizabeth Martinson, PhD, from the KHFI Editorial Office for her editorial assistance.

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. C. Roller.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Prof. Dr. Gabriele A. Krombach.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional review board approval was obtained.

Methodology

• prospective

• prognostic study/observational/experimental

• performed at one institution

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roller, F.C., Kriechbaum, S., Breithecker, A. et al. Correlation of native T1 mapping with right ventricular function and pulmonary haemodynamics in patients with chronic thromboembolic pulmonary hypertension before and after balloon pulmonary angioplasty. Eur Radiol 29, 1565–1573 (2019). https://doi.org/10.1007/s00330-018-5702-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-018-5702-x

Keywords

  • Magnetic resonance imaging
  • Pulmonary hypertension
  • Pulmonary embolism
  • Angioplasty