European Radiology

, Volume 28, Issue 12, pp 5160–5170 | Cite as

Left ventricular myocardial deformation in Takotsubo syndrome: a cardiovascular magnetic resonance myocardial feature tracking study

  • Thomas Stiermaier
  • Torben Lange
  • Amedeo Chiribiri
  • Christian Möller
  • Tobias Graf
  • Christina Villnow
  • Uwe Raaz
  • Adriana Villa
  • Johannes T. Kowallick
  • Joachim Lotz
  • Gerd Hasenfuß
  • Holger Thiele
  • Andreas Schuster
  • Ingo EitelEmail author



This study assessed the applicability and prognostic value of cardiovascular magnetic resonance (CMR) left ventricular deformation analysis in Takotsubo syndrome (TTS).


CMR-feature tracking was performed blinded in a core laboratory to determine circumferential (CS), radial (RS) and longitudinal strain (LS) in 141 TTS patients participating in this cohort study. A subgroup of consecutive TTS patients (n = 20) was compared with age- and sex-matched controls with anterior ST-segment elevation myocardial infarction (STEMI) and non-STEMI as well as healthy subjects.


Median global CS, RS and LS were -19%, 19% and -12%, respectively. Apical ballooning was associated with significantly lower global CS (p < 0.01) and LS (p < 0.01) compared with midventricular and basal ballooning. Global RS was lowest in patients with basal ballooning (p < 0.01). Segmental analysis resulted in a reliable discrimination of different ballooning patterns using CS and LS. Strain values were significantly lower in TTS compared with non-STEMI patients and healthy subjects, whereas STEMI patients showed similar values. While global CS and RS were not associated with long-term mortality, global LS (cutoff -14.75%) was identified as a potential parameter for long-term risk stratification (mortality rate 17.9% versus 2.5%; p = 0.02).


The transient contraction abnormalities in TTS can be quantitatively assessed with CMR-feature tracking. GLS is a potential determinant of outcome in TTS, which, however, requires further validation.

Key Points

Cardiovascular magnetic resonance myocardial feature tracking enables accurate assessment of regional and global left ventricular dysfunction in Takotsubo syndrome (TTS).

Global strain in TTS is similar to patients with anterior STEMI and lower compared with non-STEMI and healthy subjects.

Global longitudinal strain is a potential tool for risk prediction in TTS patients.


Takotsubo cardiomyopathy Ventricular function, left Magnetic resonance imaging Strain Prognosis 



Cardiovascular magnetic resonance


Cardiovascular magnetic resonance myocardial feature tracking


Circumferential strain


Global circumferential strain


Global longitudinal strain


Global radial strain


Interquartile range


Longitudinal strain


Left ventricular


Non-ST-segment elevation myocardial infarction


Radial strain


Steady state-free precession


ST-segment elevation myocardial infarction


Time to peak


Transthoracic echocardiography


Takotsubo syndrome



The authors are grateful for the financial support provided by the German Center for Cardiovascular Research (DZHK).


This study has received funding by the German Center for Cardiovascular Research (DZHK).

Compliance with ethical standards


The scientific guarantors of this publication are Ingo Eitel and Andreas Schuster.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.


• Retrospective analysis of prospectively collected data

• Observational diagnostic and prognostic study

• Multicenter study

Supplementary material

330_2018_5475_MOESM1_ESM.docx (72 kb)
ESM 1 (DOCX 71 kb)
330_2018_5475_Fig6_ESM.png (1.1 mb)

(TIF 65 kb) (PNG 1.14 mb)

330_2018_5475_MOESM2_ESM.tif (66 kb)
High resolution (TIF 65 kb)


  1. 1.
    Lyon AR, Bossone E, Schneider B et al (2016) Current state of knowledge on Takotsubo syndrome: a position statement from the Taskforce on Takotsubo Syndrome of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 18:8–27CrossRefGoogle Scholar
  2. 2.
    Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P et al (2011) Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy. JAMA 306:277–286PubMedGoogle Scholar
  3. 3.
    Prasad A, Lerman A, Rihal CS (2008) Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction. Am Heart J 155:408–417CrossRefGoogle Scholar
  4. 4.
    Schuster A, Hor KN, Kowallick JT, Beerbaum P, Kutty S (2016) Cardiovascular magnetic resonance myocardial feature tracking: concepts and clinical applications. Circ Cardiovasc Imaging 9:e004077CrossRefGoogle Scholar
  5. 5.
    Schuster A, Paul M, Bettencourt N et al (2015) Myocardial feature tracking reduces observer-dependence in low-dose dobutamine stress cardiovascular magnetic resonance. PLoS One 10:e0122858CrossRefGoogle Scholar
  6. 6.
    Stiermaier T, Moeller C, Oehler K et al (2016) Long-term excess mortality in takotsubo cardiomyopathy: predictors, causes and clinical consequences. Eur J Heart Fail 18:650–656CrossRefGoogle Scholar
  7. 7.
    Templin C, Ghadri JR, Diekmann J et al (2015) Clinical features and outcomes of Takotsubo (stress) cardiomyopathy. N Engl J Med 373:929–938CrossRefGoogle Scholar
  8. 8.
    Stiermaier T, Eitel C, Denef S et al (2015) Prevalence and clinical significance of life-threatening arrhythmias in Takotsubo cardiomyopathy. J Am Coll Cardiol 65:2148–2150CrossRefGoogle Scholar
  9. 9.
    Ghadri JR, Cammann VL, Napp LC et al (2016) Differences in the clinical profile and outcomes of typical and atypical Takotsubo syndrome: data from the International Takotsubo Registry. JAMA Cardiol 1:335–340CrossRefGoogle Scholar
  10. 10.
    Stiermaier T, Moller C, Graf T et al (2016) Prognostic usefulness of the ballooning pattern in patients with Takotsubo cardiomyopathy. Am J Cardiol 118:1737–1741CrossRefGoogle Scholar
  11. 11.
    Buss SJ, Breuninger K, Lehrke S et al (2015) Assessment of myocardial deformation with cardiac magnetic resonance strain imaging improves risk stratification in patients with dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging 16:307–315CrossRefGoogle Scholar
  12. 12.
    Eitel I, Wohrle J, Suenkel H et al (2013) Intracoronary compared with intravenous bolus abciximab application during primary percutaneous coronary intervention in ST-segment elevation myocardial infarction: cardiac magnetic resonance substudy of the AIDA STEMI trial. J Am Coll Cardiol 61:1447–1454CrossRefGoogle Scholar
  13. 13.
    Thiele H, de Waha S, Zeymer U et al (2014) Effect of aspiration thrombectomy on microvascular obstruction in NSTEMI patients: the TATORT-NSTEMI trial. J Am Coll Cardiol 64:1117–1124CrossRefGoogle Scholar
  14. 14.
    Friedrich MG, Sechtem U, Schulz-Menger J et al (2009) Cardiovascular magnetic resonance in myocarditis: a JACC White Paper. J Am Coll Cardiol 53:1475–1487CrossRefGoogle Scholar
  15. 15.
    Eitel I, Behrendt F, Schindler K et al (2008) Differential diagnosis of suspected apical ballooning syndrome using contrast-enhanced magnetic resonance imaging. Eur Heart J 29:2651–2659CrossRefGoogle Scholar
  16. 16.
    Hor KN, Gottliebson WM, Carson C et al (2010) Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC Cardiovasc Imaging 3:144–151CrossRefGoogle Scholar
  17. 17.
    Kempny A, Fernandez-Jimenez R, Orwat S et al (2012) Quantification of biventricular myocardial function using cardiac magnetic resonance feature tracking, endocardial border delineation and echocardiographic speckle tracking in patients with repaired tetralogy of Fallot and healthy controls. J Cardiovasc Magn Reson 14:32CrossRefGoogle Scholar
  18. 18.
    Schuster A, Stahnke VC, Unterberg-Buchwald C et al (2015) Cardiovascular magnetic resonance feature-tracking assessment of myocardial mechanics: Intervendor agreement and considerations regarding reproducibility. Clin Radiol 70:989–998CrossRefGoogle Scholar
  19. 19.
    Schuster A, Kutty S, Padiyath A et al (2011) Cardiovascular magnetic resonance myocardial feature tracking detects quantitative wall motion during dobutamine stress. J Cardiovasc Magn Reson 13:58CrossRefGoogle Scholar
  20. 20.
    Kowallick JT, Morton G, Lamata P et al (2016) Inter-study reproducibility of left ventricular torsion and torsion rate quantification using MR myocardial feature tracking. J Magn Reson Imaging 43:128–137CrossRefGoogle Scholar
  21. 21.
    Citro R, Lyon AR, Meimoun P et al (2015) Standard and advanced echocardiography in takotsubo (stress) cardiomyopathy: clinical and prognostic implications. J Am Soc Echocardiogr 28:57–74CrossRefGoogle Scholar
  22. 22.
    Heggemann F, Hamm K, Kaelsch T et al (2011) Global and regional myocardial function quantification in Takotsubo cardiomyopathy in comparison to acute anterior myocardial infarction using two-dimensional (2D) strain echocardiography. Echocardiography 28:715–719CrossRefGoogle Scholar
  23. 23.
    Burri MV, Nanda NC, Lloyd SG et al (2008) Assessment of systolic and diastolic left ventricular and left atrial function using vector velocity imaging in Takotsubo cardiomyopathy. Echocardiography 25:1138–1144CrossRefGoogle Scholar
  24. 24.
    Heggemann F, Weiss C, Hamm K et al (2009) Global and regional myocardial function quantification by two-dimensional strain in Takotsubo cardiomyopathy. Eur J Echocardiogr 10:760–764CrossRefGoogle Scholar
  25. 25.
    Andre F, Steen H, Matheis P et al (2015) Age- and gender-related normal left ventricular deformation assessed by cardiovascular magnetic resonance feature tracking. J Cardiovasc Magn Reson 17:25CrossRefGoogle Scholar
  26. 26.
    Taylor RJ, Moody WE, Umar F et al (2015) Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: normal values. Eur Heart J Cardiovasc Imaging 16:871–881CrossRefGoogle Scholar
  27. 27.
    Eitel I, Desch S, Sareban M et al (2009) Prognostic significance and magnetic resonance imaging findings in aborted myocardial infarction after primary angioplasty. Am Heart J 158:806–813CrossRefGoogle Scholar
  28. 28.
    Shetye A, Nazir SA, Squire IB, McCann GP (2015) Global myocardial strain assessment by different imaging modalities to predict outcomes after ST-elevation myocardial infarction: a systematic review. World J Cardiol 7:948–960CrossRefGoogle Scholar
  29. 29.
    Orwat S, Diller GP, Kempny A et al (2016) Myocardial deformation parameters predict outcome in patients with repaired tetralogy of Fallot. Heart 102:209–215CrossRefGoogle Scholar
  30. 30.
    Morton G, Schuster A, Jogiya R, Kutty S, Beerbaum P, Nagel E (2012) Inter-study reproducibility of cardiovascular magnetic resonance myocardial feature tracking. J Cardiovasc Magn Reson 14:43CrossRefGoogle Scholar
  31. 31.
    Obokata M, Nagata Y, Wu VC et al (2016) Direct comparison of cardiac magnetic resonance feature tracking and 2D/3D echocardiography speckle tracking for evaluation of global left ventricular strain. Eur Heart J Cardiovasc Imaging 17:525–532CrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2018

Authors and Affiliations

  • Thomas Stiermaier
    • 1
  • Torben Lange
    • 2
  • Amedeo Chiribiri
    • 3
  • Christian Möller
    • 1
  • Tobias Graf
    • 1
  • Christina Villnow
    • 1
  • Uwe Raaz
    • 2
  • Adriana Villa
    • 3
  • Johannes T. Kowallick
    • 4
  • Joachim Lotz
    • 4
  • Gerd Hasenfuß
    • 2
  • Holger Thiele
    • 5
  • Andreas Schuster
    • 2
    • 6
  • Ingo Eitel
    • 1
    Email author
  1. 1.Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Heart Center Lübeck and German Center for Cardiovascular Research (DZHK)LübeckGermany
  2. 2.Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-AugustUniversity German Center for Cardiovascular Research (DZHK)GöttingenGermany
  3. 3.Division of Imaging Sciences and Biomedical EngineeringKing’s College LondonLondonUK
  4. 4.Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Georg-August University and German Center for Cardiovascular Research (DZHK)GöttingenGermany
  5. 5.Department of Internal Medicine/CardiologyHeart Center Leipzig – University HospitalLeipzigGermany
  6. 6.The Kolling Institute, Northern Clinical School, Royal North Shore Hospital, Department of CardiologyUniversity of SydneySydneyAustralia

Personalised recommendations