Skip to main content
Log in

Quantitative MR spectroscopy reveals metabolic changes in the dorsolateral prefrontal cortex of patients with temporal lobe epilepsy

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To characterize possible metabolic changes of the dorsolateral prefrontal cortex (DLPFC) in patients with temporal lobe epilepsy (TLE).

Methods

Quantitative proton magnetic resonance spectroscopy (1H-MRS) studies were performed on 24 TLE patients and 22 healthy controls. Metabolite concentrations were calculated using a linear combination model (LCModel) and corrected for cerebrospinal fluid contamination. Comparisons were performed between the TLE patients and the controls and between the left DLPFC and right DLPFC in each group. Pearson correlation coefficients were calculated between the metabolite concentrations and epilepsy duration and between the metabolite concentrations and voxel tissue composition: [gray matter (GM)/(GM+white matter (WM))].

Results

Metabolic asymmetry was found in controls between the left and right DLPFC, i.e., the NAA concentration of the left DLPFC was significantly higher than that of the right. However, such metabolic asymmetry was not observed in TLE patients. Compared with the controls, TLE patients showed significantly decreased NAA and Ins, and the reductions were greater in the left DLPFC. No significant correlation was found between the metabolite concentrations and epilepsy duration or between the metabolite concentrations and voxel tissue composition [GM/(GM+WM)].

Conclusions

This study suggests that TLE can produce metabolic changes to DLPFC that is remote from the seizure focus.

Key Points

Magnetic resonance spectroscopy probes the brain metabolism noninvasively.

Dorsolateral prefrontal reductions in NAA (a neuronal marker) and Ins are observed in TLE.

Temporal lobe epilepsy can result in metabolic changes remote from the seizure focus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

1H-MRS:

Proton magnetic resonance spectroscopy

ANOVA:

One-way analysis of variance

ANTs:

Advanced normalization tools

CHESS:

Chemical shift selective

Cho:

Choline, including glycerophosphocholine and phosphocholine

contra:

Contralateral to the epileptic focus

Cr:

Creatine + phosphocreatine

CSF:

Cerebrospinal fluid

DLPFC:

Dorsolateral prefrontal cortex

GM:

Gray matter

Glx:

Glutamate + glutamine

Ins:

Myoinositol

ipsi:

Ipsilateral to the epileptic focus

L+R:

Average value of the left and right DLPFCs

L_sub_TLE:

Left TLE subgroup

L:

Left

LCModel:

Linear combination model

LSD:

Least significant difference

MPRAGE:

Magnetization prepared rapid gradient echo

NAA:

N-acetyl aspartate

PRESS:

Point-resolved spectroscopy

R_sub_TLE:

Right TLE subgroup

R:

Right

TLE:

Temporal lobe epilepsy

VOIs:

Volumes of interest

WM:

White matter

References

  1. Sidek S, Ramli N (2016) In vivo proton magnetic resonance spectroscopy (1H- MRS) evaluation of the metabolite concentration of optic radiation in primary open angle glaucoma. Eur Radiol 26(12):4404–4412

    Article  Google Scholar 

  2. Ranjeva JP, Confort-Gouny S, Le Fur Y et al (2000) Magnetic resonance spectroscopy of brain in epilepsy. Childs Nerv Syst 16(4):235–241

    Article  CAS  Google Scholar 

  3. Lu JJ, Ren LK, Feng F et al (2006) Metabolic abnormalities in mesial temporal lobe epilepsy patients depicted by proton MR spectroscopy using a 3. 0t MR scanner. Chin Med Sci J 21(4):209–213

    PubMed  Google Scholar 

  4. Aydin H, Oktay NA, Kizilgoz V, Altin E, Tatar IG, Hekimoglu B (2012) Value of proton-MR-spectroscopy in the diagnosis of temporal lobe epilepsy; correlation of metabolite alterations with electroencephalography. Iran J Radiol 9(1):1–11

    Article  Google Scholar 

  5. Li LM, Dubeau F, Andermann F, Arnold DL (2000) Proton magnetic resonance spectroscopic imaging studies in patients with newly diagnosed partial epilepsy. Epilepsia 41(7):825–831

    Article  CAS  Google Scholar 

  6. Krsek P, Hajek M, Dezortova M et al (2007) 1H MR spectroscopic imaging in patients with MRI-negative extratemporal epilepsy: correlation with ictal onset zone and histopathology. Eur Radiol 17(8):2126–2135

    Article  Google Scholar 

  7. Lieb JP, Dasheiff RM, Engel J Jr (1991) Role of the frontal lobes in the propagation of mesial temporal lobe seizures. Epilepsia 32(6):822–837

    Article  CAS  Google Scholar 

  8. Drake M, Allegri RF, Thomson A (2000) Executive cognitive alteration of prefrontal type in patients with mesial temporal lobe epilepsy. Medicina (B Aires) 60(4):453–456

    CAS  Google Scholar 

  9. Hermann B, Seidenberg M, Lee EJ, Chan F, Rutecki P (2007) Cognitive phenotypes in temporal lobe epilepsy. J Int Neuropsychol Soc 13(1):12–20

    Article  Google Scholar 

  10. Paik E (1998) Functions of the prefrontal cortex in the human brain. J Korean Med Sci 13(6):569–581

    Article  CAS  Google Scholar 

  11. Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14(4):260–264

    Article  CAS  Google Scholar 

  12. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679

    Article  CAS  Google Scholar 

  13. Hammen T, Hildebrandt M, Stadlbauer A et al (2008) Non-invasive detection of hippocampal sclerosis: correlation between metabolite alterations detected by (1)H-MRS and neuropathology. NMR Biomed 21(6):545–552

    Article  CAS  Google Scholar 

  14. Yue Q, Liu M, Nie X et al (2012) Quantitative 3.0T MR spectroscopy reveals decreased creatine concentration in the dorsolateral prefrontal cortex of patients with social anxiety disorder. PLoS One 7(10):e48105

    Article  CAS  Google Scholar 

  15. Woermann FG, McLean MA, Bartlett PA, Parker GJ, Barker GJ, Duncan JS (1999) Short echo time single-voxel 1H magnetic resonance spectroscopy in magnetic resonance imaging-negative temporal lobe epilepsy: different biochemical profile compared with hippocampal sclerosis. Ann Neurol 45(3):369–376

    Article  CAS  Google Scholar 

  16. Petroff OA, Errante LD, Kim JH, Spencer DD (2003) N-acetyl-aspartate, total creatine, and myo-inositol in the epileptogenic human hippocampus. Neurology 60(10):1646–1651

    Article  CAS  Google Scholar 

  17. Bernard D, Walker PM, Baudouin-Poisson N et al (1996) Asymmetric metabolic profile in mesial temporal lobes: localized H-1 MR spectroscopy in healthy right-handed and non-right-handed subjects. Radiology 199(2):381–389

    Article  CAS  Google Scholar 

  18. Riederer F, Bittsansky M, Schmidt C et al (2006) 1H magnetic resonance spectroscopy at 3 T in cryptogenic and mesial temporal lobe epilepsy. NMR Biomed 19(5):544–553

    Article  CAS  Google Scholar 

  19. Jayasundar R (2002) Human brain: biochemical lateralization in normal subjects. Neurol India 50(3):267–271

    CAS  PubMed  Google Scholar 

  20. Rademacher J, Burgel U, Geyer S et al (2001) Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. Brain 124(Pt 11):2232–2258

    Article  CAS  Google Scholar 

  21. Amunts K, Schlaug G, Schleicher A et al (1996) Asymmetry in the human motor cortex and handedness. Neuroimage 4(3 Pt 1):216–222

    Article  CAS  Google Scholar 

  22. Gur RC, Packer IK, Hungerbuhler JP et al (1980) Differences in the distribution of gray and white matter in human cerebral hemispheres. Science 207(4436):1226–1228

    Article  CAS  Google Scholar 

  23. Wellard RM, Briellmann RS, Prichard JW, Syngeniotis A, Jackson GD (2003) Myoinositol abnormalities in temporal lobe epilepsy. Epilepsia 44(6):815–821

    Article  CAS  Google Scholar 

  24. Capizzano AA, Vermathen P, Laxer KD et al (2002) Multisection proton MR spectroscopy for mesial temporal lobe epilepsy. AJNR Am J Neuroradiol 23(8):1359–1368

    PubMed  PubMed Central  Google Scholar 

  25. Mueller SG, Laxer KD, Cashdollar N, Flenniken DL, Matson GB, Weiner MW (2004) Identification of abnormal neuronal metabolism outside the seizure focus in temporal lobe epilepsy. Epilepsia 45(4):355–366

    Article  Google Scholar 

  26. Mueller SG, Ebel A, Barakos J et al (2011) Widespread extrahippocampal NAA/(Cr+Cho) abnormalities in TLE with and without mesial temporal sclerosis. J Neurol 258(4):603–612

    Article  Google Scholar 

  27. Vermathen P, Laxer KD, Schuff N, Matson GB, Weiner MW (2003) Evidence of neuronal injury outside the medial temporal lobe in temporal lobe epilepsy: N-acetylaspartate concentration reductions detected with multisection proton MR spectroscopic imaging--initial experience. Radiology 226(1):195–202

    Article  Google Scholar 

  28. Fisher SK, Novak JE, Agranoff BW (2002) Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J Neurochem 82(4):736–754

    Article  CAS  Google Scholar 

  29. Brand A, Leibfritz D, Richter-Landsberg C (1999) Oxidative stress-induced metabolic alterations in rat brain astrocytes studied by multinuclear NMR spectroscopy. J Neurosci Res 58(4):576–585

    Article  CAS  Google Scholar 

  30. Flugel D, McLean MA, Simister RJ, Duncan JS (2006) Magnetisation transfer ratio of choline is reduced following epileptic seizures. NMR Biomed 19(2):217–222

    Article  CAS  Google Scholar 

  31. Lunsing RJ, Strating K, de Koning TJ, Sijens PE (2017) Diagnostic value of MRS-quantified brain tissue lactate level in identifying children with mitochondrial disorders. Eur Radiol 27(3):976–984

    Article  Google Scholar 

  32. Petroff OA, Pleban LA, Spencer DD (1995) Symbiosis between in vivo and in vitro NMR spectroscopy: the creatine, N-acetylaspartate, glutamate, and GABA content of the epileptic human brain. Magn Reson Imaging 13(8):1197–1211

    Article  CAS  Google Scholar 

  33. Olsen RW, Avoli M (1997) GABA and epileptogenesis. Epilepsia 38(4):399–407

    Article  CAS  Google Scholar 

  34. Sherwin A, Robitaille Y, Quesney F et al (1988) Excitatory amino acids are elevated in human epileptic cerebral cortex. Neurology 38(6):920–923

    Article  CAS  Google Scholar 

  35. Westman E, Spenger C, Wahlund LO, Lavebratt C (2007) Carbamazepine treatment recovered low N-acetylaspartate+N-acetylaspartylglutamate (tNAA) levels in the megencephaly mouse BALB/cByJ-Kv1.1(mceph/mceph). Neurobiol Dis 26(1):221–228

    Article  CAS  Google Scholar 

  36. Campos BA, Yasuda CL, Castellano G, Bilevicius E, Li LM, Cendes F (2010) Proton MRS may predict AED response in patients with TLE. Epilepsia 51(5):783–788

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Richard A.E. Edden for his assistance during the revision of the manuscript.

Funding

This study was funded by National Science Foundation of China (grant nos. 81371528 and 8130118) and the Sichuan Provincial Foundation of Since and Technology (grant no. 2013SZ0047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Yue.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Dr. Yue.

Conflict of interest

The authors of this manuscript declare no relationships with any companies.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Ethical approval

Institutional Review Board approval was obtained.

Informed consent

Written informed consent was obtained from all patients in this study.

Methodology

• prospective

• cross-sectional study

• performed at one institution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Q., Sun, H., Wang, W. et al. Quantitative MR spectroscopy reveals metabolic changes in the dorsolateral prefrontal cortex of patients with temporal lobe epilepsy. Eur Radiol 28, 4496–4503 (2018). https://doi.org/10.1007/s00330-018-5443-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-018-5443-x

Keywords

Navigation