Skip to main content

Advertisement

Log in

Renal fat fraction and diffusion tensor imaging in patients with early-stage diabetic nephropathy

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To investigate the renal fat fraction and water molecular diffusion features in patients with early-stage DN using Dixon imaging and diffusion tensor imaging (DTI).

Methods

Sixty-one type 2 diabetics (normoalbuminuria: n = 40; microalbuminuria: n = 21) and 34 non-diabetic volunteers were included. All participants received three-point Dixon imaging and DTI using a 3.0-T magnetic resonance imager. The fat fraction [FF] and DTI features [fractional anisotropy (FA), apparent diffusion coefficient (ADC), tract counts and length from DTI tractography] were collected. All image features were compared between cohorts using one-way ANOVA with Bonferroni post-hoc analysis.

Results

Renal FF in the microalbuminuric group was significantly higher than in the normoalbuminuric and control groups (5.6% ± 1.3%, 4.7% ± 1.1% and 4.3% ± 0.5%, respectively; p < 0.001). Medullary FA in the microalbuminuric group was the lowest (0.31 ± 0.06) in all cohorts. The tract counts and length in the renal medulla were significantly lower in the microalbuminuric group than in the other two groups.

Conclusions

Dixon imaging and DTI are able to detect renal lipid deposition and water molecule diffusion abnormalities in patients with early-stage DN. Both techniques have the potential to noninvasively evaluate early renal impairment in type 2 diabetes.

Key points

• Dixon imaging demonstrated renal fat deposition in early-stage DN;

• Renal fractional anisotropy decreased in patients with early-stage DN;

• Renal tractography demonstrated reduced track counts and length in early-stage DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

ADC:

Apparent Diffusion Coefficient

BMI:

Body Mass Index

DN:

Diabetic Nephropathy

DTI:

Diffusion Tensor Imaging

eGFR:

Estimated Glomerular Filtration Rate

FA:

Fractional Anisotropy

FF:

Fat Fraction

fMRI:

Functional Magnetic Resonance Imaging

FOV:

Field of View

ROI:

Region of Interest

TE:

Echo Time

TR:

Repetition Time

References

  1. Jha V, Garcia-Garcia G, Iseki K et al (2013) Chronic kidney disease: global dimension and perspectives. Lancet 382:260–272

    Article  PubMed  Google Scholar 

  2. Jones CA, Krolewski AS, Rogus J, Xue JL, Collins A, Warram JH (2005) Epidemic of end-stage renal disease in people with diabetes in the United States population: do we know the cause? Kidney Int 67:1684–1691

    Article  PubMed  Google Scholar 

  3. Macisaac RJ, Ekinci EI, Jerums G (2014) Markers of and risk factors for the development and progression of diabetic kidney disease. Am J Kidney Dis 63:S39–S62

    Article  PubMed  Google Scholar 

  4. Wahba IM, Mak RH (2007) Obesity and obesity-initiated metabolic syndrome: mechanistic links to chronic kidney disease. Clin J Am Soc Nephrol 2:550–562

    Article  PubMed  CAS  Google Scholar 

  5. Peng XG, Bai YY, Fang F et al (2013) Renal lipids and oxygenation in diabetic mice: noninvasive quantification with MR imaging. Radiology 269:748–757

    Article  PubMed  Google Scholar 

  6. Wang Z, Jiang T, Li J et al (2005) Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes. Diabetes 54:2328–2335

    Article  PubMed  CAS  Google Scholar 

  7. Yokoo T, Clark HR, Pedrosa I et al (2016) Quantification of renal steatosis in type II diabetes mellitus using Dixon-based MRI. J Magn Reson Imaging 44:1312–1319

    Article  PubMed  PubMed Central  Google Scholar 

  8. Herman-Edelstein M, Scherzer P, Tobar A, Levi M, Gafter U (2014) Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J Lipid Res 55:561–572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Dominguez JH, Tang N, Xu W et al (2000) Studies of renal injury III: lipid-induced nephropathy in type II diabetes. Kidney Int 57:92–104

    Article  PubMed  CAS  Google Scholar 

  10. Bobulescu IA (2010) Renal lipid metabolism and lipotoxicity. Curr Opin Nephrol Hypertens 19:393–402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Abrass CK (2004) Cellular lipid metabolism and the role of lipids in progressive renal disease. Am J Nephrol 24:46–53

    Article  PubMed  CAS  Google Scholar 

  12. Bagby SP (2004) Obesity-initiated metabolic syndrome and the kidney: a recipe for chronic kidney disease? J Am Soc Nephrol 15:2775–2791

    Article  PubMed  Google Scholar 

  13. Moorhead JF, Chan MK, El-Nahas M, Varghese Z (1982) Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet 2:1309–1311

    Article  PubMed  CAS  Google Scholar 

  14. Hojs R, Ekart R, Bevc S, Hojs N (2015) Biomarkers of renal disease and progression in patients with diabetes. J Clin Med 4:1010–1024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Baxmann AC, Ahmed MS, Marques NC et al (2008) Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin J Am Soc Nephrol 3:348–354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Peng XG, Ju S, Qin Y et al (2011) Quantification of liver fat in mice: comparing dual-echo Dixon imaging, chemical shift imaging, and 1H-MR spectroscopy. J Lipid Res 52:1847–1855

    Article  PubMed  CAS  Google Scholar 

  17. Reeder SB, Hu HH, Sirlin CB (2012) Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging 36:1011–1014

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li G, Xu Z, Chen Y et al (2016) Longitudinal assessment of marrow fat content using three-point Dixon technique in osteoporotic rabbits. Menopause 23:1339–1344

    Article  PubMed  Google Scholar 

  19. Mann LW, Higgins DM, Peters CN et al (2016) Accelerating MR imaging liver steatosis measurement using combined compressed sensing and parallel imaging: a quantitative evaluation. Radiology 278:247–256

    Article  PubMed  Google Scholar 

  20. Gaudiano C, Clementi V, Busato F et al (2013) Diffusion tensor imaging and tractography of the kidneys: assessment of chronic parenchymal diseases. Eur Radiol 23:1678–1685

    Article  PubMed  Google Scholar 

  21. Hueper K, Gutberlet M, Rodt T et al (2011) Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction-initial results. Eur Radiol 21:2427–2433

    Article  PubMed  Google Scholar 

  22. Hueper K, Hartung D, Gutberlet M et al (2012) Magnetic resonance diffusion tensor imaging for evaluation of histopathological changes in a rat model of diabetic nephropathy. Invest Radiol 47:430–437

    Article  PubMed  Google Scholar 

  23. Liu Z, Xu Y, Zhang J et al (2015) Chronic kidney disease: pathological and functional assessment with diffusion tensor imaging at 3T MR. Eur Radiol 25:652–660

    Article  PubMed  Google Scholar 

  24. Zheng Z, Shi H, Zhang J, Zhang Y (2014) Renal water molecular diffusion characteristics in healthy native kidneys: assessment with diffusion tensor MR imaging. PLoS One 9:e113469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sigmund EE, Vivier PH, Sui D et al (2012) Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology 263:758–769

    Article  PubMed  Google Scholar 

  26. Thoeny HC, De Keyzer F (2011) Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology 259:25–38

    Article  PubMed  Google Scholar 

  27. Iima M, Le Bihan D (2016) Clinical intravoxel incoherent motion and diffusion MR imaging: past, present, and future. Radiology 278:13–32

    Article  PubMed  Google Scholar 

  28. Leung WK, Gao L, Siu PM, Lai CW (2016) Diabetic nephropathy and endothelial dysfunction: current and future therapies, and emerging of vascular imaging for preclinical renal-kinetic study. Life Sci 166:121–130

    Article  PubMed  CAS  Google Scholar 

  29. Notohamiprodjo M, Glaser C, Herrmann KA et al (2008) Diffusion tensor imaging of the kidney with parallel imaging: initial clinical experience. Invest Radiol 43:677–685

    Article  PubMed  Google Scholar 

  30. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194

    Article  PubMed  CAS  Google Scholar 

  31. Atchley DH, Lopes-Virella MF, Zheng D, Kenny D, Virella G (2002) Oxidized LDL-anti-oxidized LDL immune complexes and diabetic nephropathy. Diabetologia 45:1562–1571

    Article  PubMed  CAS  Google Scholar 

  32. Wang XX, Jiang T, Shen Y et al (2009) The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria. Am J Physiol Renal Physiol 297:F1587–F1596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wang ZJ, Kumar R, Banerjee S, Hsu CY (2011) Blood oxygen level-dependent (BOLD) MRI of diabetic nephropathy: preliminary experience. J Magn Reson Imaging 33:655–660

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li Q, Wu X, Qiu L, Zhang P, Zhang M, Yan F (2013) Diffusion-weighted MRI in the assessment of split renal function: comparison of navigator-triggered prospective acquisition correction and breath-hold acquisition. AJR Am J Roentgenol 200:113–119

    Article  PubMed  Google Scholar 

  35. Wang YC, Tang A, Chang D, Zhang SJ, Ju S (2014) Significant perturbation in renal functional magnetic resonance imaging parameters and contrast retention for iodixanol compared with iopromide: an experimental study using blood-oxygen-level-dependent/diffusion-weighted magnetic resonance imaging and computed tomography in rats. Invest Radiol 49:699–706

    Article  PubMed  CAS  Google Scholar 

  36. Tonneijck L, Muskiet MH, Smits MM et al (2017) Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J Am Soc Nephrol 28:1023–1039

    Article  PubMed  PubMed Central  Google Scholar 

  37. Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW (2012) Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol 8:293–300

    Article  PubMed  CAS  Google Scholar 

  38. Hostetter TH (2001) Hypertrophy and hyperfunction of the diabetic kidney. J Clin Invest 107:161–162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Inoue T, Kozawa E, Okada H et al (2011) Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol 22:1429–1434

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the National Nature Science Foundation of China (NSFC, no. 81525014), the Jiangsu Provincial Special Program of Medical Science (BL2013029) and the Key Research and Development Program of Jiangsu Province (BE2016782).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenghong Ju.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Shenghong Ju.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• observational

• performed at one institution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YC., Feng, Y., Lu, CQ. et al. Renal fat fraction and diffusion tensor imaging in patients with early-stage diabetic nephropathy. Eur Radiol 28, 3326–3334 (2018). https://doi.org/10.1007/s00330-017-5298-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-5298-6

Keywords

Navigation