Skip to main content

Proton density fat fraction (PDFF) MRI for differentiation of benign and malignant vertebral lesions

A Magnetic Resonance to this article was published on 13 April 2018

Abstract

Objectives

To investigate whether proton density fat fraction (PDFF) measurements using a six-echo modified Dixon sequence can help to differentiate between benign and malignant vertebral bone marrow lesions.

Methods

Sixty-six patients were prospectively enrolled in our study. In addition to conventional MRI at 3.0-Tesla including at least sagittal T2-weighted/spectral attenuated inversion recovery and T1-weighted sequences, all patients underwent a sagittal six-echo modified Dixon sequence of the spine. The mean PDFF was calculated using regions of interest and compared between vertebral lesions. A cut-off value of 6.40% in PDFF was determined by receiver operating characteristic curves and used to differentiate between malignant (< 6.40%) and benign (≥ 6.40%) vertebral lesions.

Results

There were 77 benign and 44 malignant lesions. The PDFF of malignant lesions was statistically significant lower in comparison with benign lesions (p < 0.001) and normal vertebral bone marrow (p < 0.001). The areas under the curves (AUC) were 0.97 for differentiating benign from malignant lesions (p < 0.001) and 0.95 for differentiating acute vertebral fractures from malignant lesions (p < 0.001). This yielded a diagnostic accuracy of 96% in the differentiation of both benign lesions and acute vertebral fractures from malignancy.

Conclusion

PDFF derived from six-echo modified Dixon allows for differentiation between benign and malignant vertebral lesions with a high diagnostic accuracy.

Key Points

Establishing a diagnosis of indeterminate vertebral lesions is a common clinical problem

Benign bone marrow processes may mimic the signal alterations observed in malignancy

PDFF differentiates between benign and malignant lesions with a high diagnostic accuracy

PDFF of non-neoplastic vertebral lesions is significantly higher than that of malignancy

PDFF from six-echo modified Dixon may help avoid potentially harmful bone biopsy

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

AUC:

Area Under the Curve

DWI:

Diffusion-Weighted Imaging

mDixon:

Modified Dixon

6E-mDixon:

Six-Echo Modified Dixon

NPV:

Negative Predictive Value

PDFF:

Proton Density Fat Fraction

PET/CT:

Positron Emission Tomography/Computed Tomography

PPV:

Positive Predictive Value

ROC:

Receiver Operating Characteristic

ROI:

Region Of Interest

SE:

Spin Echo

SENSE:

Sensitivity Encoding

SPAIR:

Spectral Attenuated Inversion Recovery

STIR:

Short-Tau Inversion Recovery

TE:

Echo Time

TR:

Repetition Time

References

  1. Vogler JB 3rd, Murphy WA (1988) Bone marrow imaging. Radiology 168:679–693

    Article  PubMed  Google Scholar 

  2. Ricci C, Cova M, Kang YS et al (1990) Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 177:83–88

    Article  CAS  PubMed  Google Scholar 

  3. Yuh WT, Zachar CK, Barloon TJ, Sato Y, Sickels WJ, Hawes DR (1989) Vertebral compression fractures: distinction between benign and malignant causes with MR imaging. Radiology 172:215–218

    Article  CAS  PubMed  Google Scholar 

  4. Hanna SL, Fletcher BD, Fairclough DL, Jenkins JH 3rd, Le AH (1991) Magnetic resonance imaging of disseminated bone marrow disease in patients treated for malignancy. Skeletal Radiol 20:79–84

    Article  CAS  PubMed  Google Scholar 

  5. Zajick DC Jr, Morrison WB, Schweitzer ME, Parellada JA, Carrino JA (2005) Benign and malignant processes: normal values and differentiation with chemical shift MR imaging in vertebral marrow. Radiology 237:590–596

    Article  PubMed  Google Scholar 

  6. Douis H, Davies AM, Jeys L, Sian P (2016) Chemical shift MRI can aid in the diagnosis of indeterminate skeletal lesions of the spine. Eur Radiol 26:932–940

    Article  CAS  PubMed  Google Scholar 

  7. Disler DG, McCauley TR, Ratner LM, Kesack CD, Cooper JA (1997) In-phase and out-of-phase MR imaging of bone marrow: prediction of neoplasia based on the detection of coexistent fat and water. AJR Am J Roentgenol 169:1439–1447

    Article  CAS  PubMed  Google Scholar 

  8. Zampa V, Cosottini M, Michelassi C, Ortori S, Bruschini L, Bartolozzi C (2002) Value of opposed-phase gradient-echo technique in distinguishing between benign and malignant vertebral lesions. Eur Radiol 12:1811–1818

    Article  PubMed  Google Scholar 

  9. Eggers H, Brendel B, Duijndam A, Herigault G (2011) Dual-echo Dixon imaging with flexible choice of echo times. Magn Reson Med 65:96–107

    Article  PubMed  Google Scholar 

  10. Yoo YH, Kim HS, Lee YH et al (2015) Comparison of multi-echo Dixon methods with volume interpolated breath-hold gradient echo magnetic resonance imaging in fat-signal fraction quantification of paravertebral muscle. Korean J Radiol 16:1086–1095

    Article  PubMed  PubMed Central  Google Scholar 

  11. Karampinos DC, Ruschke S, Dieckmeyer M et al (2015) Modeling of T2* decay in vertebral bone marrow fat quantification. NMR Biomed 28:1535–1542

    Article  CAS  PubMed  Google Scholar 

  12. Karampinos DC, Yu H, Shimakawa A, Link TM, Majumdar S (2011) T(1)-corrected fat quantification using chemical shift-based water/fat separation: application to skeletal muscle. Magn Reson Med 66:1312–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ren J, Dimitrov I, Sherry AD, Malloy CR (2008) Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla. J Lipid Res 49:2055–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kukuk GM, Hittatiya K, Sprinkart AM et al (2015) Comparison between modified Dixon MRI techniques, MR spectroscopic relaxometry, and different histologic quantification methods in the assessment of hepatic steatosis. Eur Radiol 25:2869–2879

    Article  PubMed  Google Scholar 

  15. Bray TJP, Bainbridge A, Punwani S, Ioannou Y, Hall-Craggs MA (2017) Simultaneous quantification of bone edema/adiposity and structure in inflamed bone using chemical shift-encoded MRI in spondyloarthritis. Magn Reson Med. https://doi.org/10.1002/mrm.26729

  16. Yoo HJ, Hong SH, Kim DH et al (2017) Measurement of fat content in vertebral marrow using a modified dixon sequence to differentiate benign from malignant processes. J Magn Reson Imaging 45:1534–1544

    Article  PubMed  Google Scholar 

  17. Serai SD, Dillman JR, Trout AT (2017) Proton density fat fraction measurements at 1.5- and 3-T hepatic MR imaging: same-day agreement among readers and across two imager manufacturers. Radiology 284:244–254

    Article  PubMed  Google Scholar 

  18. Yokoo T, Serai SD, Pirasteh A et al (2017) Linearity, bias, and precision of hepatic proton density fat fraction measurements by using MR imaging: a meta-analysis. Radiology. https://doi.org/10.1148/radiol.2017170550:170550

  19. Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166:193–199

    Article  CAS  PubMed  Google Scholar 

  20. Reeder SB, Sirlin CB (2010) Quantification of liver fat with magnetic resonance imaging. Magn Reson Imaging Clin N Am 18:337–357 ix

    Article  PubMed  PubMed Central  Google Scholar 

  21. Reeder SB, Hines CD, Yu H, McKenzie C, Brittain JH (2009) On the definition of fat-fraction for in vivo fat quantification with magnetic resonance imaging. Proc Int Soc Magn Reson Med 17:211

    Google Scholar 

  22. Bolan PJ, Arentsen L, Sueblinvong T et al (2013) Water-fat MRI for assessing changes in bone marrow composition due to radiation and chemotherapy in gynecologic cancer patients. J Magn Reson Imaging 38:1578–1584

    Article  PubMed  Google Scholar 

  23. Myrehaug S, Sahgal A, Hayashi M et al (2017) Reirradiation spine stereotactic body radiation therapy for spinal metastases: systematic review. J Neurosurg Spine 27:428–435

    Article  PubMed  Google Scholar 

  24. Karampinos DC, Melkus G, Baum T, Bauer JS, Rummeny EJ, Krug R (2014) Bone marrow fat quantification in the presence of trabecular bone: initial comparison between water-fat imaging and single-voxel MRS. Magn Reson Med 71:1158–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hines CD, Yu H, Shimakawa A, McKenzie CA, Brittain JH, Reeder SB (2009) T1 independent, T2* corrected MRI with accurate spectral modeling for quantification of fat: validation in a fat-water-SPIO phantom. J Magn Reson Imaging 30:1215–1222

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB (2008) Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 60:1122–1134

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gee CS, Nguyen JT, Marquez CJ et al (2015) Validation of bone marrow fat quantification in the presence of trabecular bone using MRI. J Magn Reson Imaging 42:539–544

    Article  PubMed  Google Scholar 

  28. Arentsen L, Yagi M, Takahashi Y et al (2015) Validation of marrow fat assessment using noninvasive imaging with histologic examination of human bone samples. Bone 72:118–122

    Article  PubMed  Google Scholar 

  29. Tang A, Desai A, Hamilton G et al (2015) Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease. Radiology 274:416–425

    Article  PubMed  Google Scholar 

  30. Padhani AR, van Ree K, Collins DJ, D'Sa S, Makris A (2013) Assessing the relation between bone marrow signal intensity and apparent diffusion coefficient in diffusion-weighted MRI. AJR Am J Roentgenol 200:163–170

    Article  PubMed  Google Scholar 

  31. Hayashida Y, Hirai T, Yakushiji T et al (2006) Evaluation of diffusion-weighted imaging for the differential diagnosis of poorly contrast-enhanced and T2-prolonged bone masses: Initial experience. J Magn Reson Imaging 23:377–382

    Article  PubMed  Google Scholar 

  32. Raya JG, Dietrich O, Reiser MF, Baur-Melnyk A (2005) Techniques for diffusion-weighted imaging of bone marrow. Eur J Radiol 55:64–73

    Article  CAS  PubMed  Google Scholar 

  33. Hacklander T, Scharwachter C, Golz R, Mertens H (2006) [Value of diffusion-weighted imaging for diagnosing vertebral metastases due to prostate cancer in comparison to other primary tumors]. Rofo 178:416–424

    Article  CAS  PubMed  Google Scholar 

  34. Latifoltojar A, Hall-Craggs M, Bainbridge A et al (2017) Whole-body MRI quantitative biomarkers are associated significantly with treatment response in patients with newly diagnosed symptomatic multiple myeloma following bortezomib induction. Eur Radiol. https://doi.org/10.1007/s00330-017-4907-8

  35. Takasu M, Kaichi Y, Tani C et al (2015) Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) magnetic resonance imaging as a biomarker for symptomatic multiple myeloma. PLoS One 10:e0116842

    Article  PubMed  PubMed Central  Google Scholar 

  36. Takasu M, Tani C, Sakoda Y et al (2012) Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) imaging of multiple myeloma: initial clinical efficiency results. Eur Radiol 22:1114–1121

    Article  PubMed  Google Scholar 

  37. Kugel H, Jung C, Schulte O, Heindel W (2001) Age- and sex-specific differences in the 1H-spectrum of vertebral bone marrow. J Magn Reson Imaging 13:263–268

    Article  CAS  PubMed  Google Scholar 

  38. Griffith JF, Yeung DK, Ma HT, Leung JC, Kwok TC, Leung PC (2012) Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J Magn Reson Imaging 36:225–230

    Article  PubMed  Google Scholar 

  39. Martin J, Nicholson G, Cowin G, Ilente C, Wong W, Kennedy D (2014) Rapid determination of vertebral fat fraction over a large range of vertebral bodies. J Med Imaging Radiat Oncol 58:155–163

    Article  PubMed  Google Scholar 

  40. Baum T, Yap SP, Dieckmeyer M et al (2015) Assessment of whole spine vertebral bone marrow fat using chemical shift-encoding based water-fat MRI. J Magn Reson Imaging 42:1018–1023

    Article  PubMed  Google Scholar 

  41. Wendt RE 3rd, Wilcott MR 3rd, Nitz W, Murphy PH, Bryan RN (1988) MR imaging of susceptibility-induced magnetic field inhomogeneities. Radiology 168:837–841

    Article  PubMed  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Matthias Kukuk.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Priv.-Doz. Dr. med. Guido Matthias Kukuk at Bonn University Hospital.

Conflict of interest

The authors of this manuscript declare relationships with the following companies: Dr. Jürgen Gieseke is an employee of Philips Healthcare (Best, The Netherlands) but had no control of inclusion of any data or data analysis. The other authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all patients in this study.

Ethical approval

Institutional review board approval was obtained.

Methodology

• prospective

• diagnostic or prognostic study

• performed at one institution

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmeel, F.C., Luetkens, J.A., Wagenhäuser, P.J. et al. Proton density fat fraction (PDFF) MRI for differentiation of benign and malignant vertebral lesions. Eur Radiol 28, 2397–2405 (2018). https://doi.org/10.1007/s00330-017-5241-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-5241-x

Keywords