Skip to main content
Log in

The diagnostic performance of reduced-dose CT for suspected appendicitis in paediatric and adult patients: A systematic review and diagnostic meta-analysis

  • Gastrointestinal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate the diagnostic performance of reduced-dose CT for suspected appendicitis.

Methods

A systematic search of the MEDLINE and EMBASE databases was carried out through to 10 January 2017. Studies evaluating the diagnostic performance of reduced-dose CT for suspected appendicitis in paediatric and adult patients were selected. Pooled summary estimates of sensitivity and specificity were calculated using hierarchical logistic regression modelling. Meta-regression was performed.

Results

Fourteen original articles with a total of 3,262 patients were included. For all studies using reduced-dose CT, the summary sensitivity was 96 % (95 % CI 93–98) with a summary specificity of 94 % (95 % CI 92–95). For the 11 studies providing a head-to-head comparison between reduced-dose CT and standard-dose CT, reduced-dose CT demonstrated a comparable summary sensitivity of 96 % (95 % CI 91–98) and specificity of 94 % (95 % CI 93–96) without any significant differences (p=.41). In meta-regression, there were no significant factors affecting the heterogeneity. The median effective radiation dose of the reduced-dose CT was 1.8 mSv (1.46–4.16 mSv), which was a 78 % reduction in effective radiation dose compared to the standard-dose CT.

Conclusion

Reduced-dose CT shows excellent diagnostic performance for suspected appendicitis.

Key Points

• Reduced-dose CT shows excellent diagnostic performance for evaluating suspected appendicitis.

• Reduced-dose CT has a comparable diagnostic performance to standard-dose CT.

• Median effective radiation dose of reduced-dose CT was 1.8 mSv (1.46–4.16).

• Reduced-dose CT achieved a 78 % dose reduction compared to standard-dose CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CT:

Computed tomography

DLP:

Dose length product

QUADAS-2:

Quality Assessment of Diagnostic Accuracy Studies-2

HSROC:

Hierarchical summary receiver operating characteristic

References

  1. Doria AS, Moineddin R, Kellenberger CJ et al (2006) US or CT for Diagnosis of Appendicitis in Children and Adults? A Meta-Analysis. Radiology 241:83–94

    Article  PubMed  Google Scholar 

  2. Hale DA, Molloy M, Pearl RH, Schutt DC, Jaques DP (1997) Appendectomy: a contemporary appraisal. Ann Surg 225:252–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Callahan MJ, Rodriguez DP, Taylor GA (2002) CT of appendicitis in children. Radiology 224:325–332

    Article  PubMed  Google Scholar 

  4. Smith MP, Katz DS, Lalani T et al (2015) ACR Appropriateness Criteria(R) Right Lower Quadrant Pain-- Suspected Appendicitis. Ultrasound Q 31:85–91

    Article  PubMed  Google Scholar 

  5. Lameris W, van Randen A, van Es HW et al (2009) Imaging strategies for detection of urgent conditions in patients with acute abdominal pain: diagnostic accuracy study. BMJ 338:b2431

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jacobs JE, Birnbaum BA, Macari M et al (2001) Acute appendicitis: comparison of helical CT diagnosis focused technique with oral contrast material versus nonfocused technique with oral and intravenous contrast material. Radiology 220:683–690

    Article  CAS  PubMed  Google Scholar 

  7. Cochon L, Esin J, Baez AA (2016) Bayesian comparative model of CT scan and ultrasonography in the assessment of acute appendicitis: results from the Acute Care Diagnostic Collaboration project. Am J Emerg Med 34:2070–2073

    Article  PubMed  Google Scholar 

  8. Hlibczuk V, Dattaro JA, Jin Z, Falzon L, Brown MD (2010) Diagnostic accuracy of noncontrast computed tomography for appendicitis in adults: a systematic review. Ann Emerg Med 55:51–59.e51

    Article  PubMed  Google Scholar 

  9. van Randen A, Bipat S, Zwinderman AH, Ubbink DT, Stoker J, Boermeester MA (2008) Acute appendicitis: meta-analysis of diagnostic performance of CT and graded compression US related to prevalence of disease. Radiology 249:97–106

    Article  PubMed  Google Scholar 

  10. Rao PM, Rhea JT, Novelline RA, Mostafavi AA, McCabe CJ (1998) Effect of computed tomography of the cappendix on treatment of patients and use of hospital resources. N Engl J Med 338:141–146

    Article  CAS  PubMed  Google Scholar 

  11. Soyer P, Dohan A, Eveno C et al (2013) Pitfalls and mimickers at 64-section helical CT that cause negative appendectomy: an analysis from 1057 appendectomies. Clin Imaging 37:895–901

    Article  PubMed  Google Scholar 

  12. Krajewski S, Brown J, Phang PT, Raval M, Brown CJ (2011) Impact of computed tomography of the abdomen on clinical outcomes in patients with acute right lower quadrant pain: a meta-analysis. Can J Surg 54:43–53

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  CAS  PubMed  Google Scholar 

  14. Smith-Bindman R, Lipson J, Marcus R et al (2009) Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 169:2078–2086

    Article  PubMed  PubMed Central  Google Scholar 

  15. Addiss DG, Shaffer N, Fowler BS, Tauxe RV (1990) The epidemiology of appendicitis and appendectomy in the United States. Am J Epidemiol 132:910–925

    Article  CAS  PubMed  Google Scholar 

  16. Bankier AA, Kressel HY (2012) Through the Looking Glass revisited: the need for more meaning and less drama in the reporting of dose and dose reduction in CT. Radiology 265:4–8

    Article  PubMed  Google Scholar 

  17. Callahan MJ, Anandalwar SP, MacDougall RD et al (2015) Pediatric CT dose reduction for suspected appendicitis: a practice quality improvement project using artificial gaussian noise--part 2, clinical outcomes. AJR Am J Roentgenol 204:636–644

    Article  PubMed  Google Scholar 

  18. Chang CC, Wong YC, Wu CH et al (2016) Diagnostic Performance on Low Dose Computed Tomography For Acute Appendicitis Among Attending and Resident Radiologists. Iran J Radiol 13:e33222

    Article  PubMed  PubMed Central  Google Scholar 

  19. Didier RA, Vajtai PL, Hopkins KL (2015) Iterative reconstruction technique with reduced volume CT dose index: diagnostic accuracy in pediatric acute appendicitis. Pediatr Radiol 45:181–187

    Article  PubMed  Google Scholar 

  20. Fefferman NR, Bomsztyk E, Yim AM et al (2005) Appendicitis in children: low-dose CT with a phantombased simulation technique—initial observations. Radiology 237:641–646

    Article  PubMed  Google Scholar 

  21. Karabulut N, Kiroglu Y, Herek D, Kocak TB, Erdur B (2014) Feasibility of low-dose unenhanced multidetector CT in patients with suspected acute appendicitis: comparison with sonography. Clin Imaging 38:296–301

    Article  PubMed  Google Scholar 

  22. Keyzer C, Cullus P, Tack D, De Maertelaer V, Bohy P, Gevenois PA (2009) MDCT for suspected acute appendicitis in adults: impact of oral and IV contrast media at standard-dose and simulated low-dose techniques. AJR Am J Roentgenol 193:1272–1281

    Article  PubMed  Google Scholar 

  23. Keyzer C, Tack D, de Maertelaer V, Bohy P, Gevenois PA, Van Gansbeke D (2004) Acute appendicitis: comparison of low-dose and standard-dose unenhanced multi-detector row CT. Radiology 232:164–172

    Article  PubMed  Google Scholar 

  24. Kim K, Kim YH, Kim SY et al (2012) Low-dose abdominal CT for evaluating suspected appendicitis. N Engl J Med 366:1596–1605

    Article  CAS  PubMed  Google Scholar 

  25. Kim SY, Lee KH, Kim K et al (2011) Acute appendicitis in young adults: low- versus standard-radiationdose contrast-enhanced abdominal CT for diagnosis. Radiology 260:437–445

    Article  PubMed  Google Scholar 

  26. Park JH, Kim B, Kim MS et al (2016) Comparison of filtered back projection and iterative reconstruction in diagnosing appendicitis at 2-mSv CT. Abdom Radiol (NY) 41:1227–1236

    Article  Google Scholar 

  27. Platon A, Jlassi H, Rutschmann OT et al (2009) Evaluation of a low-dose CT protocol with oral contrast for assessment of acute appendicitis. Eur Radiol 19:446–454

    Article  PubMed  Google Scholar 

  28. Poletti PA, Platon A, De Perrot T et al (2011) Acute appendicitis: prospective evaluation of a diagnostic algorithm integrating ultrasound and low-dose CT to reduce the need of standard CT. Eur Radiol 21:2558–2566

    Article  PubMed  Google Scholar 

  29. Seo H, Lee KH, Kim HJ et al (2009) Diagnosis of acute appendicitis with sliding slab ray-sum interpretation of low-dose unenhanced CT and standard-dose i.v. contrast-enhanced CT scans. AJR Am J Roentgenol 193:96–105

    Article  PubMed  Google Scholar 

  30. Yun SJ, Kim HC, Yang DM et al (2016) Diagnostic Usefulness of Low-Dose Nonenhanced Computed Tomography With Coronal Reformations in Patients With Suspected Acute Appendicitis: A Comparison With Standard-Dose Computed Tomography. J Comput Assist Tomogr 40:485–492

    Article  PubMed  Google Scholar 

  31. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 151:W65–W94

    Article  PubMed  Google Scholar 

  32. Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257:158–166

    Article  PubMed  Google Scholar 

  33. Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J (2003) The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 3:25

    Article  PubMed  PubMed Central  Google Scholar 

  34. Suh CH, Park SH (2016) Successful Publication of Systematic Review and Meta-Analysis of Studies Evaluating Diagnostic Test Accuracy. Korean J Radiol 17:5–6

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kim KW, Lee J, Choi SH, Huh J, Park SH (2015) Systematic Review and Meta-Analysis of Studies Evaluating Diagnostic Test Accuracy: A Practical Review for Clinical Researchers-Part I. General Guidance and Tips. Korean J Radiol 16:1175–1187

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee J, Kim KW, Choi SH, Huh J, Park SH (2015) Systematic Review and Meta-Analysis of Studies Evaluating Diagnostic Test Accuracy: A Practical Review for Clinical Researchers-Part II. Statistical Methods of Meta-Analysis. Korean J Radiol 16:1188–1196

    Article  PubMed  PubMed Central  Google Scholar 

  37. Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58:882–893

    Article  PubMed  Google Scholar 

  38. Higgins J, Green S Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. The Cochrane Collaboration. http://handbook.cochrane.org/chapter_9/9_5_2_identifying_and_measuring_heterogeneity.htm. Updated March 2011. Accessed 2 Oct 2017

  39. Deville WL, Buntinx F, Bouter LM et al (2002) Conducting systematic reviews of diagnostic studies: didactic guidelines. BMC Med Res Methodol 2:9

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schauer DA, Linton OW (2009) NCRP Report No. 160, Ionizing Radiation Exposure of the Population of the United States, medical exposure--are we doing less with more, and is there a role for health physicists? Health Phys 97:1–5

    Article  CAS  PubMed  Google Scholar 

  41. Donnelly LF, Emery KH, Brody AS et al (2001) Minimizing radiation dose for pediatric body applications of single-detector helical CT: strategies at a large Children's Hospital. AJR Am J Roentgenol 176:303–306

    Article  CAS  PubMed  Google Scholar 

  42. York D, Smith A, Phillips JD, von Allmen D (2005) The influence of advanced radiographic imaging on the treatment of pediatric appendicitis. J Pediatr Surg 40:1908–1911

    Article  PubMed  Google Scholar 

  43. Martin AE, Vollman D, Adler B, Caniano DA (2004) CT scans may not reduce the negative appendectomy rate in children. J Pediatr Surg 39:886–890 discussion 886-890

    Article  PubMed  Google Scholar 

  44. Halvorsen RA (2008) Which study when? Iodinated contrast-enhanced CT versus gadolinium-enhanced MR imaging. Radiology 249:9–15

    Article  PubMed  Google Scholar 

  45. Heuschmid M, Mann C, Luz O et al (2006) Detection of pulmonary embolism using 16-slice multidetector-row computed tomography: evaluation of different image reconstruction parameters. J Comput Assist Tomogr 30:77–82

    Article  PubMed  Google Scholar 

  46. Johnson PT, Horton KM, Kawamoto S et al (2009) MDCT for suspected appendicitis: effect of reconstruction section thickness on diagnostic accuracy, rate of appendiceal visualization, and reader confidence using axial images. AJR Am J Roentgenol 192:893–901

    Article  PubMed  Google Scholar 

  47. Joo SM, Lee KH, Kim YH et al (2009) Detection of the normal appendix with low-dose unenhanced CT: use of the sliding slab averaging technique. Radiology 251:780–787

    Article  PubMed  Google Scholar 

  48. Lee KH, Kim YH, Hahn S et al (2006) Computed tomography diagnosis of acute appendicitis: advantages of reviewing thin-section datasets using sliding slab average intensity projection technique. Investig Radiol 41:579–585

    Article  Google Scholar 

  49. Lee KH, Lee HS, Park SH et al (2007) Appendiceal diverticulitis: diagnosis and differentiation from usual acute appendicitis using computed tomography. J Comput Assist Tomogr 31:763–769

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by a grant (2017-0202) from Asan Medical Center Children’s Hospital, Seoul, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Ah Cho.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Ah Young Cho.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors (Chong Hyun Suh) has significant statistical expertise (4 years of experience in a systematic review and meta-analysis).

Ethical approval

Institutional Review Board approval was not required because of the nature of our study, which was a systemic review and meta-analysis.

Informed consent

Written informed consent was not required for this study because of the nature of our study, which was a systemic review and meta-analysis.

Methodology

• Systemic review

• Meta-analysis performed at one institution

Electronic supplementary material

ESM 1

(DOCX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, H.M., Suh, C.H., Cho, Y.A. et al. The diagnostic performance of reduced-dose CT for suspected appendicitis in paediatric and adult patients: A systematic review and diagnostic meta-analysis. Eur Radiol 28, 2537–2548 (2018). https://doi.org/10.1007/s00330-017-5231-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-5231-z

Keywords

Navigation