European Radiology

, Volume 28, Issue 5, pp 1854–1861 | Cite as

Chemical shift magnetic resonance imaging for distinguishing minimal-fat renal angiomyolipoma from renal cell carcinoma: a meta-analysis

  • Ling-Shan Chen
  • Zheng-Qiu Zhu
  • Zhi-Tao Wang
  • Jing Li
  • Li-Feng Liang
  • Ji-Yang Jin
  • Zhong-Qiu Wang
Magnetic Resonance



To determine the performance of chemical shift signal intensity index (CS-SII) values for distinguishing minimal-fat renal angiomyolipoma (mfAML) from renal cell carcinoma (RCC) and to assess RCC subtype characterisation.


We identified eligible studies on CS magnetic resonance imaging (CS-MRI) of focal renal lesions via PubMed, Embase, and the Cochrane Library. CS-SII values were extracted by lesion type and evaluated using linear mixed model-based meta-regression. RCC subtypes were analysed. Two-sided p value <0.05 indicated statistical significance. Methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 tool.


Eleven articles involving 850 patients were included. Minimal-fat AML had significantly higher CS-SII value than RCC (p < 0.05); there were no significant differences between mfAML and clear cell RCC (cc-RCC) (p = 0.112). Clear cell RCC had a significantly higher CS-SII value than papillary RCC (p-RCC) (p < 0.001) and chromophobe RCC (ch-RCC) (p = 0.045). The methodological quality was relatively high, and Begg’s test data points indicated no obvious publication bias.


The CS-SII value for differentiating mfAML from cc-RCC remains unproven, but is a promising method for differentiating cc-RCC from p-RCC and ch-RCC.

Key Points

RCC CS-SII values are significantly lower than those of mfAML overall.

CS-SII values cannot aid differentiation between mfAML and cc-RCC.

CS-SII values might help characterise RCC subtypes.


Renal cell carcinoma Minimal-fat angiomyolipoma Chemical shift magnetic resonance imaging Chemical shift signal intensity index Differentiation 



This study has received funding by the National Natural Science Foundation of China (81471705).

Compliance with ethical standards


The scientific guarantor of this publication is Zhong-Qiu Wang, MD, PhD, (Department of Radiology, Affiliated Hospital of Nanjing University of CM, Nanjing 210029, China).

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

Pin Wang, PhD, (Department of Endocrinology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China) kindly provided statistical advice for this manuscript.

Ethical approval

Institutional Review Board approval was not required because we only performed data analysis based on the published studies.

Informed consent

Informed consent was not required because this is a meta-analysis of several published papers and therefore data of our cohorts have been published already in these papers.


• Diagnostic or prognostic study

• Performed at one institution


  1. 1.
    Bissler JJ, Kingswood JC (2004) Renal angiomyolipomata. Kidney Int 66:924–934CrossRefPubMedGoogle Scholar
  2. 2.
    Bosniak MA, Megibow AJ, Hulnick DH et al (1988) CT diagnosis of renal angiomyolipoma: the importance of detecting small amounts of fat. AJR Am J Roentgenol 151:497–501CrossRefPubMedGoogle Scholar
  3. 3.
    Catalano OA, Samir AE, Sahani DV et al (2008) Pixel distribution analysis: can it be used to distinguish clear cell carcinomas from angiomyolipomas with minimal fat? Radiology 247:738–746CrossRefPubMedGoogle Scholar
  4. 4.
    Israel GM, Hindman N, Hecht E et al (2005) The use of opposed-phase chemical shift MRI in the diagnosis of renal angiomyolipomas. AJR Am J Roentgenol 184:1868–1872CrossRefPubMedGoogle Scholar
  5. 5.
    Jinzaki M, Tanimoto A, Narimatsu Y et al (1997) Angiomyolipoma: imaging findings in lesions with minimal fat. Radiology 205:497–502CrossRefPubMedGoogle Scholar
  6. 6.
    Thoenes W, Störkel S, Rumpelt HJ et al (1986) Histopathology and classification  of renal cell tumors (adenomas, oncocytomas and carcinomas). The basic cytological and histopathological elements and their use for diagnostics. Pathol Res Pract 181:125–143CrossRefPubMedGoogle Scholar
  7. 7.
    O’Toole KM, Brown M, Hoffmann P et al (1993) Pathology of benign and  malignant kidney tumors. Urol Clin North Am 20:193–205PubMedGoogle Scholar
  8. 8.
    Hajdu SI, Savino A, Hajdu EO et al (1971) Cytologic diagnosis of renal cell carcinoma with the aid of fat stain. Acta Cytol 15:31–33PubMedGoogle Scholar
  9. 9.
    Krishnan B, Truong LD (2002) Renal epithelial neoplasms: the diagnostic  implications of electron microscopic study in 55 cases. Hum Pathol 33:68–79CrossRefPubMedGoogle Scholar
  10. 10.
    Hood MN, Ho VB, Smirniotopoulos JG et al (1999) Chemical shift: the artifact and clinical tool revisited. Radiographics 19:357–371CrossRefPubMedGoogle Scholar
  11. 11.
    Namimoto T, Yamashita Y, Mitsuzaki K et al (2001) Adrenal masses: quantification of fat content with double-echo chemical shift in-phase and opposed-phase FLASH MR images for differentiation of adrenal adenomas. Radiology 218:642–646CrossRefPubMedGoogle Scholar
  12. 12.
    Haider MA, Ghai S, Jhaveri K et al (2004) Chemical shift MR imaging of hyperattenuating (10 HU) adrenal asses: does it still have a role? Radiology 231:711–716CrossRefPubMedGoogle Scholar
  13. 13.
    Hosokawa Y, Kinouchi T, Sawai Y et al (2002) Renal angiomyolipoma with minimal fat. Int J Clin Oncol 7:120–123PubMedGoogle Scholar
  14. 14.
    Delfaut EM, Beltran J, Johnson G et al (1999) Fat suppression in MR imaging: techniques and pitfalls. Radiographics 19:373–382CrossRefPubMedGoogle Scholar
  15. 15.
    Karlo CA, Donati OF, Burger IA et al (2013) MR imaging of renal cortical tumours: qualitative and quantitative chemical shift imaging parameters. Eur Radiol 23:1738–1744CrossRefPubMedGoogle Scholar
  16. 16.
    Outwater EK, Bhatia M, Siegelman ES et al (1997) Lipid in renal clear cell carcinoma: detection on opposed-phase gradient-echo MR images. Radiology 205:103–107CrossRefPubMedGoogle Scholar
  17. 17.
    Peng XG, Ju S, Qin Y et al (2011) Quantification of liver fat in mice: comparing dual-echo Dixon imaging, chemical shift imaging, and 1H-MR spectroscopy. J Lipid Res 52:1847–1855CrossRefPubMedGoogle Scholar
  18. 18.
    Kim JK, Kim SH, Jang YJ et al (2006) Renal angiomyolipoma with minimal fat: differentiation from other neoplasms at double-echo chemical shift FLASH MR imaging. Radiology 239:174–180CrossRefPubMedGoogle Scholar
  19. 19.
    Sasiwimonphan K, Takahashi N, Leibovich BC et al (2012) Small (<4 cm) renal mass: differentiation of angiomyolipoma without visible fat from renal cell carcinoma utilizing MR imaging. Radiology 263:160–168CrossRefPubMedGoogle Scholar
  20. 20.
    Hindman N, Ngo L, Genega EM et al (2012) Angiomyolipoma with minimal fat: can it be differentiated from clear cell renal cell carcinoma by using standard MR techniques? Radiology 265:468–477CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ferré R, Cornelis F, Verkarre V et al (2015) Double-echo gradient chemical shift MR imaging fails to differentiate minimal fat renal angiomyolipomas from other homogeneous solid renal tumors. Eur J Radiol 84:360–365CrossRefPubMedGoogle Scholar
  22. 22.
    Schieda N, Dilauro M, Moosavi B et al (2016) MRI evaluation of small (<4 cm) solid renal masses: multivariate modeling improves diagnostic accuracy for angiomyolipoma without visible fat compared to univariate analysis. Eur Radiol 26:2242–2251CrossRefPubMedGoogle Scholar
  23. 23.
    Park JJ, Kim CK (2017) Small (<4 cm) renal tumors with predominantly low signal intensity on T2-weighted images: differentiation of minimal-fat angiomyolipoma from renal cell carcinoma. AJR Am J Roentgenol 208:124–130CrossRefPubMedGoogle Scholar
  24. 24.
    Jhaveri KS, Elmi A, Hosseini-Nik H et al (2015) Predictive value of chemical-shift MRI in distinguishing clear cell renal cell carcinoma from non–clear cell renal cell carcinoma and minimal-fat angiomyolipoma. AJR Am J Roentgenol 205:W79–W86CrossRefPubMedGoogle Scholar
  25. 25.
    Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536CrossRefPubMedGoogle Scholar
  26. 26.
    Hafron J, Fogarty JD, Hoenig DM et al (2005) Imaging characteristics of minimal fat renal angiomyolipoma with histologic correlations. Urology 66:1155–1159CrossRefPubMedGoogle Scholar
  27. 27.
    Milner J, McNeil B, Alioto J et al (2006) Fat poor renal angiomyolipoma: patient, computerized tomography and histological findings. J Urol 176:905–909CrossRefPubMedGoogle Scholar
  28. 28.
    Simpfendorfer C, Herts BR, Motta-Ramirez GA et al (2009) Angiomyolipoma with minimal fat on MDCT: can counts of negative-attenuation pixels aid diagnosis? AJR Am J Roentgenol 192:438–443CrossRefPubMedGoogle Scholar
  29. 29.
    Roy C, Sauer B, Lindner V et al (2007) MR Imaging of papillary renal neoplasms: potential application for characterization of small renal masses. Eur Radiol 17:193–200CrossRefPubMedGoogle Scholar
  30. 30.
    Pedrosa I, Sun MR, Spencer M et al (2008) MR imaging of renal masses: correlation with findings at surgery and pathologic analysis. Radiographics 28:985–1003CrossRefPubMedGoogle Scholar
  31. 31.
    Kohl CA, Chivers FS, Lorans R et al (2014) Accuracy of chemical shift MR imaging in diagnosing indeterminate bone marrow lesions in the pelvis: review of a single institution's experience. Skelet Radiol 43:1079–1084CrossRefGoogle Scholar
  32. 32.
    Wang X, Hernando D, Reeder SB et al (2016) Sensitivity of chemical shift-encoded fat quantification to calibration of fat MR spectrum. Magn Reson Med 75:845–851CrossRefPubMedGoogle Scholar
  33. 33.
    Priola AM, Priola SM, Ciccone G et al (2015) Differentiation of rebound and lymphoid thymic hyperplasia from anterior mediastinal tumors with dual echo chemical-shift MR imaging in adulthood: reliability of the chemical shift ratio and signal intensity index. Radiology 274:238–249CrossRefPubMedGoogle Scholar
  34. 34.
    Tsushima Y, Ishizaka H, Matsumoto M et al (2015) Adrenal masses: differentiation with chemical shift, fast low-angle shot MR imaging. Radiology 186:705–709CrossRefGoogle Scholar
  35. 35.
    Fujiyoshi F, Nakajo M, Fukukura Y et al (2003) Characterization of adrenal tumors by chemical shift fast low-angle shot MR imaging: comparison of four methods of quantitative evaluation. AJR Am J Roentgenol 180:1649–1657CrossRefPubMedGoogle Scholar
  36. 36.
    Reuter VE (2003) The pathology of renal epithelial neoplasms. Semin Oncol 33:534–543CrossRefGoogle Scholar
  37. 37.
    Lim RS, Flood TA, McInnes MDF et al (2017) Renal angiomyolipoma without visible fat: Can we make the diagnosis using CT and MRI? Eur Radiol. 00330-017-4988-4
  38. 38.
    Kang SK, Huang WC, Pandharipande PV et al (2014) Solid renal masses: what the numbers tell us. AJR Am J Roentgenol 202:1196–1206CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Amin MB, Amin MB, Tamboli P et al (2002) Prognostic impact of histologic subtyping of adult renal epithelial neoplasms: an experience of 405 cases. Am J Surg Pathol 26:281–291CrossRefPubMedGoogle Scholar
  40. 40.
    Cheville JC, Lohse CM, Zincke H et al (2002) Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am J Surg Pathol 27:612–624CrossRefGoogle Scholar
  41. 41.
    Delahunt B, Bethwaite PB, Nacey JN (2007) Outcome prediction for renal cell carcinoma: evaluation of prognostic factors for tumours divided according to histological subtype. Pathology 39:459–465CrossRefPubMedGoogle Scholar
  42. 42.
    Escudier B, Eisen T, Stadler WM et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134CrossRefPubMedGoogle Scholar
  43. 43.
    Motzer RJ, Hutson TE, Tomczak P et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124CrossRefPubMedGoogle Scholar
  44. 44.
    Chowdhury S, Choueiri TK (2009) Recent advances in the systemic treatment of metastatic papillary renal cancer. Expert Rev Anticancer Ther 9:373–379CrossRefPubMedGoogle Scholar
  45. 45.
    Sun MR, Ngo L, Genega EM et al (2009) Renal cell carcinoma: dynamic contrast -enhanced MR imaging for differentiation of tumor subtypes—correlation with pathologic findings. Radiology 250:793–802CrossRefPubMedGoogle Scholar
  46. 46.
    Mytsyk Y, Dutka I, Borys Y et al (2016) Renal cell carcinoma: applicability of the apparent coefficient of the diffusion‑weighted estimated by MRI for improving their differential diagnosis, histologic subtyping, and differentiation grade. Int Urol Nephrol 49:215–224CrossRefPubMedGoogle Scholar
  47. 47.
    Pedrosa I, Chou MT, Ngo L et al (2007) MR classification of renal masses with pathologic correlation. Eur Radiol 18:365–375CrossRefPubMedGoogle Scholar
  48. 48.
    Childs DD, Clingan MJ, Zagoria RJ et al (2014) In-phase signal intensity loss in solid renal masses on dual-echo gradient-echo MRI: association with malignancy and pathologic classification. AJR Am J Roentgenol 203:W421–W428CrossRefPubMedGoogle Scholar
  49. 49.
    Yoshimitsu K, Kakihara D, Irie H et al (2006) Papillary renal carcinoma: diagnostic approach by chemical shift gradient echo and echo-planar MR imaging. J Magn Reson Imaging 23:339–344CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2017

Authors and Affiliations

  • Ling-Shan Chen
    • 1
  • Zheng-Qiu Zhu
    • 2
  • Zhi-Tao Wang
    • 1
  • Jing Li
    • 1
  • Li-Feng Liang
    • 1
  • Ji-Yang Jin
    • 3
  • Zhong-Qiu Wang
    • 1
  1. 1.Department of RadiologyAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
  2. 2.Department of UltrasoundAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
  3. 3.Department of RadiologyZhongda Hospital of Southeast UniversityNanjingChina

Personalised recommendations