European Radiology

, Volume 28, Issue 2, pp 602–609 | Cite as

Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach

  • Anne Becker
  • Max Masthoff
  • Jing Claussen
  • Steven James Ford
  • Wolfgang Roll
  • Matthias Burg
  • Peter J. Barth
  • Walter Heindel
  • Michael Schäfers
  • Michel Eisenblätter
  • Moritz WildgruberEmail author


Background and aim

Multispectral optoacoustic tomography (MSOT) represents a new in vivo imaging technique with high resolution (~250 μm) and tissue penetration (>1 cm) using the photoacoustic effect. While ultrasound contains anatomical information for lesion detection, MSOT provides functional information based on intrinsic tissue chromophores. We aimed to evaluate the feasibility of combined ultrasound/MSOT imaging of breast cancer in patients compared to healthy volunteers.


Imaging was performed using a handheld MSOT system for clinical use in healthy volunteers (n = 6) and representative patients with histologically confirmed invasive breast carcinoma (n = 5) and ductal carcinoma in situ (DCIS, n = 2). MSOT values for haemoglobin and oxygen saturation were assessed at 0.5, 1.0 and 1.5 cm depth and selected wavelengths between 700 and 850 nm.


Reproducible signals were obtained in all wavelengths with consistent MSOT signals in superficial tissue in breasts of healthy individuals. In contrast, we found increased signals for haemoglobin in invasive carcinoma, suggesting a higher perfusion of the tumour and tumour environment. For DCIS, MSOT values showed only little variation compared to healthy tissue.


This preliminary MSOT breast imaging study provided stable, reproducible data on tissue composition and physiological properties, potentially enabling differentiation of solid malignant and healthy tissue.

Key Points

A handheld MSOT probe enables real-time molecular imaging of the breast.

MSOT of healthy controls provides a reproducible reference for pathology identification.

MSOT parameters allows for differentiation of invasive carcinoma and healthy tissue.


Multispectral optoacoustic tomography Optoacoustic imaging Ultrasound In vivo imaging Breast cancer 



Ductal carcinoma in situ


Magnetic resonance imaging


Multispectral optoacoustic tomography




Positron emission tomography


Region of interest


Reflection ultrasound computed tomography




Compliance with ethical standards


The scientific guarantor of this publication is Moritz Wildgruber.

Conflict of interest

The authors of this manuscript declare relationships with the following companies:

Jing Claussen and Steven J. Ford are employees of iThera Medical, a manufacturer of commercial optoacoustic scanners.


The authors state that this work has not received any funding.

Statistics and biometry

One of the authors has significant statistical expertise.

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was waived because scans were obtained during a pilot test series, which was covered under the Declaration of Helsinki §37 (‘individual healing research’)


• prospective

• experimental

• performed at one institution

Supplementary material

330_2017_5002_MOESM1_ESM.docx (97 kb)
ESM 1 (DOCX 96 kb)


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90CrossRefPubMedGoogle Scholar
  2. 2.
    Shankar LK, Hoffman JM, Bacharach S et al (2006) Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med 47:1059–1066PubMedGoogle Scholar
  3. 3.
    Erickson-Bhatt SJ, Roman M, Gonzalez J, et al (2015) Noninvasive surface imaging of breast cancer in humans using a hand-held optical imager. Biomed Phys Eng Express 1(4). doi: 10.1088/2057-1976/1/4/045001
  4. 4.
    Zografos G, Liakou P, Koulocheri D et al (2015) Differentiation of BIRADS-4 small breast lesions via Multimodal Ultrasound Tomography. Eur Radiol 25:410–418CrossRefPubMedGoogle Scholar
  5. 5.
    Berg WA, Cosgrove DO, Dore CJ et al (2012) Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology 262:435–449CrossRefPubMedGoogle Scholar
  6. 6.
    Song JL, Chen C, Yuan JP, Sun SR (2016) Progress in the clinical detection of heterogeneity in breast cancer. Cancer Med 5:3475–3488CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Buehler A, Kacprowicz M, Taruttis A, Ntziachristos V (2013) Real-time handheld multispectral optoacoustic imaging. Opt Lett 38:1404–1406CrossRefPubMedGoogle Scholar
  8. 8.
    Valluru KS, Willmann JK (2016) Clinical photoacoustic imaging of cancer. Ultrasonography 35:267–280CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dima A, Ntziachristos V (2016) In-vivo handheld optoacoustic tomography of the human thyroid. Photoacoustics 4:65–69CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Taruttis A, Timmermans AC, Wouters PC, Kacprowicz M, van Dam GM, Ntziachristos V (2016) Optoacoustic imaging of human vasculature: feasibility by using a handheld probe. Radiology 281:256–263CrossRefPubMedGoogle Scholar
  11. 11.
    Bell AG (1881) The production of sound by radiant energy. Science 2:242–253CrossRefPubMedGoogle Scholar
  12. 12.
    Taruttis A, Ntziachristos V (2015) Advances in real-time multispectral optoacoustic imaging and its applications. Nat Photonics 9:219–227CrossRefGoogle Scholar
  13. 13.
    Taruttis A, Wildgruber M, Kosanke K et al (2013) Multispectral optoacoustic tomography of myocardial infarction. Photoacoustics 1:3–8CrossRefPubMedGoogle Scholar
  14. 14.
    McCormack D, Al-Shaer M, Goldschmidt BS et al (2009) Photoacoustic detection of melanoma micrometastasis in sentinel lymph nodes. J Biomech Eng 131, 074519CrossRefPubMedGoogle Scholar
  15. 15.
    McNally LR, Mezera M, Morgan DE et al (2016) Current and emerging clinical applications of Multispectral Optoacoustic Tomography (MSOT) in Oncology. Clin Cancer Res 22:3432–3439CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Neuschmelting V, Lockau H, Ntziachristos V, Grimm J, Kircher MF (2016) Lymph node micrometastases and in-transit metastases from melanoma: in vivo detection with multispectral optoacoustic imaging in a mouse model. Radiology 280:137–150CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bhutiani N, Grizzle WE, Galandiuk S et al (2016) Non-invasive imaging of colitis using multispectral optoacoustic tomography. J Nucl Med 58:1009–1012CrossRefPubMedGoogle Scholar
  18. 18.
    Grosenick D, Rinneberg H, Cubeddu R, Taroni P (2016) Review of optical breast imaging and spectroscopy. J Biomed Opt 21, 091311CrossRefPubMedGoogle Scholar
  19. 19.
    Tromberg BJ, Shah N, Lanning R et al (2000) Non-invasive in vivo characterisation of breast tumors using photon migration spectroscopy. Neoplasia 2:26–40CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Xu M, Wang LV (2005) Universal back-projection algorithm for photoacoustic computed tomography. Phys Rev E Stat Nonlin Soft Matter Phys 71, 016706CrossRefPubMedGoogle Scholar
  21. 21.
    Mercep E, Burton NC, Claussen J, Razansky D (2015) Whole-body live mouse imaging by hybrid reflection-mode ultrasound and optoacoustic tomography. Opt Lett 40:4643–4646CrossRefPubMedGoogle Scholar
  22. 22.
    Folkman J (1994) Angiogenesis and breast cancer. J Clin Oncol 12:441–443CrossRefPubMedGoogle Scholar
  23. 23.
    Vaupel P, Hockel M (2000) Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterisation and therapeutic relevance. Int J Oncol 17:869–879PubMedGoogle Scholar
  24. 24.
    Becker A, Grosse Hokamp N, Zenker S et al (2015) Optical in vivo imaging of the alarmin S100A9 in tumor lesions allows for estimation of the individual malignant potential by evaluation of tumor-host cell interaction. J Nucl Med 56:450–456CrossRefPubMedGoogle Scholar
  25. 25.
    Gilkes DM, Semenza GL (2013) Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol 9:1623–1636CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ham M, Moon A (2013) Inflammatory and microenvironmental factors involved in breast cancer progression. Arch Pharm Res 36:1419–1431CrossRefPubMedGoogle Scholar
  27. 27.
    Heijblom M, Piras D, Brinkhuis M et al (2015) Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology. Sci Rep 5:11778CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ntziachristos V, Yodh AG, Schnall MD, Chance B (2002) MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions. Neoplasia 4:347–354CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Enfield LC, Gibson AP, Hebden JC, Douek M (2009) Optical tomography of breast cancer-monitoring response to primary medical therapy. Target Oncol 4:219–233CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2017

Authors and Affiliations

  • Anne Becker
    • 1
  • Max Masthoff
    • 1
  • Jing Claussen
    • 2
  • Steven James Ford
    • 2
  • Wolfgang Roll
    • 3
  • Matthias Burg
    • 1
  • Peter J. Barth
    • 4
  • Walter Heindel
    • 1
  • Michael Schäfers
    • 3
    • 5
  • Michel Eisenblätter
    • 1
    • 6
  • Moritz Wildgruber
    • 1
    Email author
  1. 1.Department of Clinical RadiologyUniversity Hospital MuensterMuensterGermany
  2. 2.iThera MedicalMunichGermany
  3. 3.Department of Nuclear MedicineUniversity Hospital MuensterMuensterGermany
  4. 4.Gerhard-Domagk-Institute of PathologyUniversity Hospital MuensterMuensterGermany
  5. 5.European Institute for Molecular Imaging – EIMIUniversity of MuensterMuensterGermany
  6. 6.Divison of Imaging Sciences & Biomedical EngineeringKing’s College LondonLondonUK

Personalised recommendations