Skip to main content

Advertisement

Log in

Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach

  • Experimental
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Background and aim

Multispectral optoacoustic tomography (MSOT) represents a new in vivo imaging technique with high resolution (~250 μm) and tissue penetration (>1 cm) using the photoacoustic effect. While ultrasound contains anatomical information for lesion detection, MSOT provides functional information based on intrinsic tissue chromophores. We aimed to evaluate the feasibility of combined ultrasound/MSOT imaging of breast cancer in patients compared to healthy volunteers.

Methods

Imaging was performed using a handheld MSOT system for clinical use in healthy volunteers (n = 6) and representative patients with histologically confirmed invasive breast carcinoma (n = 5) and ductal carcinoma in situ (DCIS, n = 2). MSOT values for haemoglobin and oxygen saturation were assessed at 0.5, 1.0 and 1.5 cm depth and selected wavelengths between 700 and 850 nm.

Results

Reproducible signals were obtained in all wavelengths with consistent MSOT signals in superficial tissue in breasts of healthy individuals. In contrast, we found increased signals for haemoglobin in invasive carcinoma, suggesting a higher perfusion of the tumour and tumour environment. For DCIS, MSOT values showed only little variation compared to healthy tissue.

Conclusions

This preliminary MSOT breast imaging study provided stable, reproducible data on tissue composition and physiological properties, potentially enabling differentiation of solid malignant and healthy tissue.

Key Points

A handheld MSOT probe enables real-time molecular imaging of the breast.

MSOT of healthy controls provides a reproducible reference for pathology identification.

MSOT parameters allows for differentiation of invasive carcinoma and healthy tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DCIS:

Ductal carcinoma in situ

MRI:

Magnetic resonance imaging

MSOT:

Multispectral optoacoustic tomography

OA:

Optoacoustic

PET:

Positron emission tomography

ROI:

Region of interest

RUCT:

Reflection ultrasound computed tomography

US:

Ultrasound

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Shankar LK, Hoffman JM, Bacharach S et al (2006) Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med 47:1059–1066

    CAS  PubMed  Google Scholar 

  3. Erickson-Bhatt SJ, Roman M, Gonzalez J, et al (2015) Noninvasive surface imaging of breast cancer in humans using a hand-held optical imager. Biomed Phys Eng Express 1(4). doi:10.1088/2057-1976/1/4/045001

  4. Zografos G, Liakou P, Koulocheri D et al (2015) Differentiation of BIRADS-4 small breast lesions via Multimodal Ultrasound Tomography. Eur Radiol 25:410–418

    Article  CAS  PubMed  Google Scholar 

  5. Berg WA, Cosgrove DO, Dore CJ et al (2012) Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology 262:435–449

    Article  PubMed  Google Scholar 

  6. Song JL, Chen C, Yuan JP, Sun SR (2016) Progress in the clinical detection of heterogeneity in breast cancer. Cancer Med 5:3475–3488

    Article  PubMed  PubMed Central  Google Scholar 

  7. Buehler A, Kacprowicz M, Taruttis A, Ntziachristos V (2013) Real-time handheld multispectral optoacoustic imaging. Opt Lett 38:1404–1406

    Article  CAS  PubMed  Google Scholar 

  8. Valluru KS, Willmann JK (2016) Clinical photoacoustic imaging of cancer. Ultrasonography 35:267–280

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dima A, Ntziachristos V (2016) In-vivo handheld optoacoustic tomography of the human thyroid. Photoacoustics 4:65–69

    Article  PubMed  PubMed Central  Google Scholar 

  10. Taruttis A, Timmermans AC, Wouters PC, Kacprowicz M, van Dam GM, Ntziachristos V (2016) Optoacoustic imaging of human vasculature: feasibility by using a handheld probe. Radiology 281:256–263

    Article  PubMed  Google Scholar 

  11. Bell AG (1881) The production of sound by radiant energy. Science 2:242–253

    Article  CAS  PubMed  Google Scholar 

  12. Taruttis A, Ntziachristos V (2015) Advances in real-time multispectral optoacoustic imaging and its applications. Nat Photonics 9:219–227

    Article  CAS  Google Scholar 

  13. Taruttis A, Wildgruber M, Kosanke K et al (2013) Multispectral optoacoustic tomography of myocardial infarction. Photoacoustics 1:3–8

    Article  PubMed  Google Scholar 

  14. McCormack D, Al-Shaer M, Goldschmidt BS et al (2009) Photoacoustic detection of melanoma micrometastasis in sentinel lymph nodes. J Biomech Eng 131, 074519

    Article  PubMed  Google Scholar 

  15. McNally LR, Mezera M, Morgan DE et al (2016) Current and emerging clinical applications of Multispectral Optoacoustic Tomography (MSOT) in Oncology. Clin Cancer Res 22:3432–3439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Neuschmelting V, Lockau H, Ntziachristos V, Grimm J, Kircher MF (2016) Lymph node micrometastases and in-transit metastases from melanoma: in vivo detection with multispectral optoacoustic imaging in a mouse model. Radiology 280:137–150

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bhutiani N, Grizzle WE, Galandiuk S et al (2016) Non-invasive imaging of colitis using multispectral optoacoustic tomography. J Nucl Med 58:1009–1012

    Article  PubMed  Google Scholar 

  18. Grosenick D, Rinneberg H, Cubeddu R, Taroni P (2016) Review of optical breast imaging and spectroscopy. J Biomed Opt 21, 091311

    Article  PubMed  Google Scholar 

  19. Tromberg BJ, Shah N, Lanning R et al (2000) Non-invasive in vivo characterisation of breast tumors using photon migration spectroscopy. Neoplasia 2:26–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu M, Wang LV (2005) Universal back-projection algorithm for photoacoustic computed tomography. Phys Rev E Stat Nonlin Soft Matter Phys 71, 016706

    Article  PubMed  Google Scholar 

  21. Mercep E, Burton NC, Claussen J, Razansky D (2015) Whole-body live mouse imaging by hybrid reflection-mode ultrasound and optoacoustic tomography. Opt Lett 40:4643–4646

    Article  PubMed  Google Scholar 

  22. Folkman J (1994) Angiogenesis and breast cancer. J Clin Oncol 12:441–443

    Article  CAS  PubMed  Google Scholar 

  23. Vaupel P, Hockel M (2000) Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterisation and therapeutic relevance. Int J Oncol 17:869–879

    CAS  PubMed  Google Scholar 

  24. Becker A, Grosse Hokamp N, Zenker S et al (2015) Optical in vivo imaging of the alarmin S100A9 in tumor lesions allows for estimation of the individual malignant potential by evaluation of tumor-host cell interaction. J Nucl Med 56:450–456

    Article  CAS  PubMed  Google Scholar 

  25. Gilkes DM, Semenza GL (2013) Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol 9:1623–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ham M, Moon A (2013) Inflammatory and microenvironmental factors involved in breast cancer progression. Arch Pharm Res 36:1419–1431

    Article  CAS  PubMed  Google Scholar 

  27. Heijblom M, Piras D, Brinkhuis M et al (2015) Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology. Sci Rep 5:11778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ntziachristos V, Yodh AG, Schnall MD, Chance B (2002) MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions. Neoplasia 4:347–354

    Article  PubMed  PubMed Central  Google Scholar 

  29. Enfield LC, Gibson AP, Hebden JC, Douek M (2009) Optical tomography of breast cancer-monitoring response to primary medical therapy. Target Oncol 4:219–233

    Article  PubMed  Google Scholar 

Download references

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is Moritz Wildgruber.

Conflict of interest

The authors of this manuscript declare relationships with the following companies:

Jing Claussen and Steven J. Ford are employees of iThera Medical, a manufacturer of commercial optoacoustic scanners.

Funding

The authors state that this work has not received any funding.

Statistics and biometry

One of the authors has significant statistical expertise.

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was waived because scans were obtained during a pilot test series, which was covered under the Declaration of Helsinki §37 (‘individual healing research’)

Methodology

• prospective

• experimental

• performed at one institution

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Wildgruber.

Additional information

Anne Becker and Max Masthoff contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, A., Masthoff, M., Claussen, J. et al. Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach. Eur Radiol 28, 602–609 (2018). https://doi.org/10.1007/s00330-017-5002-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-5002-x

Keywords

Navigation