Advertisement

European Radiology

, Volume 27, Issue 12, pp 5034–5040 | Cite as

Dual energy CT iodine map for delineating inflammation of inflammatory arthritis

  • Takeshi Fukuda
  • Yoshinori Umezawa
  • Akihiko Asahina
  • Hidemi Nakagawa
  • Kazuhiro Furuya
  • Kunihiko Fukuda
Musculoskeletal

Abstract

Iodine mapping is an image-processing technique used with dual-energy computed tomography (DECT) to improve iodine contrast resolution. CT, because of its high spatial resolution and thin slice reconstruction, is well suited to the evaluation of the peripheral joints. Recent developments in the treatment of inflammatory arthritis that require early diagnosis and precise therapeutic assessment encourage radiological evaluation. To facilitate such assessment, we describe DECT iodine mapping as a novel modality for evaluating rheumatoid arthritis and psoriatic arthritis of the hands and feet.

Key Points

Dual-energy CT iodine mapping can delineate inflammation of peripheral inflammatory arthritis.

DECT iodine mapping has high spatial resolution compared with MRI.

DECT iodine mapping has a high iodine contrast resolution.

DECT iodine mapping may reflect therapeutic effects.

Keywords

Computed tomography Dual energy Inflammation Arthritis Enthesitis 

Notes

Acknowledgements

We presented a comparison study between contrast-enhanced MRI and DECT iodine mapping at the annual congress of European League Against Rheumatism (EULAR) in 2016. The contents were also published in Radiology (doi:  10.1148/radiol.2016161671).

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is Takeshi Fukuda.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Funding

The authors state that this work has not received any funding.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• observational

• performed at one institution

References

  1. 1.
    Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517CrossRefPubMedGoogle Scholar
  2. 2.
    Finkenstaedt T, Manoliou A, Toniolo M et al (2016) Gouty arthritis: the diagnostic and therapeutic impact of dual-energy CT. Eur Radiol 26:3989–3999CrossRefPubMedGoogle Scholar
  3. 3.
    Pl M, Coupal TM, Mclaughlin PD, Nicolaou S, Munk PL, Ouellette HA (2016) Dual-Energy CT for the Musculoskeletal System. Radiology 281:690–707CrossRefGoogle Scholar
  4. 4.
    Nicolaou S, Liang T, Murphy DT, Korzan JR, Ouellette H, Munk P (2012) Dual-energy CT: a promising new technique for assessment of the musculoskeletal system. AJR Am J Roentgenol 199:S78–S86CrossRefPubMedGoogle Scholar
  5. 5.
    Omoumi P, Verdun FR, Guggenberger R, Andreisek G, Becce F (2015) Dual-Energy CT: basic principles, technical approaches, and applications in musculoskeletal imaging (Part 2). Semin Musculoskelet Radiol 19:438–445CrossRefPubMedGoogle Scholar
  6. 6.
    Otrakji A, Digumarthy SR, Lo Gullo R, Flores EJ, Shepard JA, Kalra MK (2016) Dual-Energy CT: spectrum of thoracic abnormalities. Radiographics 36:38–52CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang LJ, Zhou CS, Schoepf UJ et al (2013) Dual-energy CT lung ventilation/perfusion imaging for diagnosing pulmonary embolism. Eur Radiol 23:2666–2675CrossRefPubMedGoogle Scholar
  8. 8.
    Hellbach K, Sterzik A, Sommer W et al (2016) Dual energy CT allows for improved characterization of response to antiangiogenic treatment in patients with metastatic renal cell cancer. Eur Radiol. doi: 10.1007/s00330-016-4597-7 PubMedGoogle Scholar
  9. 9.
    De Cecco CN, Darnell A, Rengo M et al (2012) Dual-energy CT: oncologic applications. AJR Am J Roentgenol 199:S98–S105CrossRefPubMedGoogle Scholar
  10. 10.
    Lam S, Gupta R, Kelly H, Curtin HD, Forghani R (2015) Multiparametric evaluation of head and neck squamous cell carcinoma using a single-source dual-energy CT with Fast kVp switching: state of the art. Cancers 7:2201–2216CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fukuda T, Umezawa Y, Tojo S et al (2016) Initial Experience of Using Dual-Energy CT with Iodine Overlay Image for Hand Psoriatic. Comparison Study with Contrast-enhanced MR Imaging. Radiology, Arthritis. doi: 10.1148/radiol.2016161671 Google Scholar
  12. 12.
    Combe B, Landewe R, Daien CI et al (2016) 2016 update of the EULAR recommendations for the management of early arthritis. Ann Rheum Dis. doi: 10.1136/annrheumdis-2016-210602 Google Scholar
  13. 13.
    Han J, Geng Y, Deng X, Zhang Z (2016) Subclinical synovitis assessed by ultrasound predicts flare and progressive bone erosion in rheumatoid arthritis patients with clinical remission: a systematic review and metaanalysis. J Rheumatol 43:2010–2018CrossRefPubMedGoogle Scholar
  14. 14.
    Faustini F, Simon D, Oliveira I et al (2016) Subclinical joint inflammation in patients with psoriasis without concomitant psoriatic arthritis: a cross-sectional and longitudinal analysis. Ann Rheum Dis. doi: 10.1136/annrheumdis-2015-208821 Google Scholar
  15. 15.
    Haugen IK, Hammer HB (2016) A need for new imaging modality to detect inflammation in rheumatoid arthritis and osteoarthritis? Ann Rheum Dis 75:479–480CrossRefPubMedGoogle Scholar
  16. 16.
    Colebatch AN, Edwards CJ, Ostergaard M et al (2013) EULAR recommendations for the use of imaging of the joints in the clinical management of rheumatoid arthritis. Ann Rheum Dis 72:804–814CrossRefPubMedGoogle Scholar
  17. 17.
    Polster JM, Winalski CS, Sundaram M et al (2009) Rheumatoid arthritis: evaluation with contrast-enhanced CT with digital bone masking. Radiology 252:225–231CrossRefPubMedGoogle Scholar
  18. 18.
    McGonagle D, Lories RJ, Tan AL, Benjamin M (2007) The concept of a "synovio-entheseal complex" and its implications for understanding joint inflammation and damage in psoriatic arthritis and beyond. Arthritis Rheum 56:2482–2491CrossRefPubMedGoogle Scholar
  19. 19.
    Narvaez J, Narvaez JA, de Albert M, Gomez-Vaquero C, Nolla JM (2012) Can magnetic resonance imaging of the hand and wrist differentiate between rheumatoid arthritis and psoriatic arthritis in the early stages of the disease? Semin Arthritis Rheum 42:234–245CrossRefPubMedGoogle Scholar
  20. 20.
    Ostergaard M, Edmonds J, Mcquees F et al (2005) An introduction to the EULAR-OMERACT rheumatoid arthritis MRI reference image atlas. Ann Rheum Dis 64:i3–i7CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Veale D, Yanni G, Rogers S, Barnes L, Bresnihan B, Fitzgerald O (1993) Reduced synovial membrane macrophage numbers, ELAM-1 expression, and lining layer hyperplasia in psoriatic arthritis as compared with rheumatoid arthritis. Arthritis Reumatol 36:893–900CrossRefGoogle Scholar
  22. 22.
    Nieuwenhuis WP, Krabben A, Stomp W et al (2015) Evaluation of magnetic resonance imaging-detected tenosynovitis in the hand and wrist in early arthritis. Arthritis Rheumatol 67:869–876CrossRefPubMedGoogle Scholar
  23. 23.
    Krabben A, Stomp W, Huizinga TW et al (2015) Concordance between inflammation at physical examination and on MRI in patients with early arthritis. Ann Rheum Dis 74:506–512CrossRefPubMedGoogle Scholar
  24. 24.
    Tan AL, Fukuba E, Halliday NA, Tanner SF, Emery P, McGonagle D (2015) High-resolution MRI assessment of dactylitis in psoriatic arthritis shows flexor tendon pulley and sheath-related enthesitis. Ann Rheum Dis 74:185–189CrossRefPubMedGoogle Scholar
  25. 25.
    McGonagle D, Marzo-Ortega H, Benjamin M, Emery P (2003) Report on the Second international Enthesitis Workshop. Arthritis Rheum 48:896–905CrossRefPubMedGoogle Scholar
  26. 26.
    Gutierrez M, Filippucci E, Salaffi F, Di Geso L, Grassi W (2011) Differential diagnosis between rheumatoid arthritis and psoriatic arthritis: the value of ultrasound findings at metacarpophalangeal joints level. Ann Rheum Dis 70:1111–1114CrossRefPubMedGoogle Scholar
  27. 27.
    Ostergaard M, McQueen F, Wiell C et al (2009) The OMERACT psoriatic arthritis magnetic resonance imaging scoring system (PsAMRIS): definitions of key pathologies, suggested MRI sequences, and preliminary scoring system for PsA Hands. J Rheumatol 36:1816–1824CrossRefPubMedGoogle Scholar
  28. 28.
    Tan AL, Benjamin M, Toumi H et al (2007) The relationship between the extensor tendon enthesis and the nail in distal interphalangeal joint disease in psoriatic arthritis--a high-resolution MRI and histological study. Rheumatology (Oxford) 46:253–256CrossRefGoogle Scholar
  29. 29.
    Kievit W, Adang EM, Fransen J et al (2008) The effectiveness and medication costs of three anti-tumour necrosis factor alpha agents in the treatment of rheumatoid arthritis from prospective clinical practice data. Ann Rheum Dis 67:1229–1234CrossRefPubMedGoogle Scholar
  30. 30.
    Lahiri M, Dixon WG (2015) Risk of infection with biologic antirheumatic therapies in patients with rheumatoid arthritis. Best Pract Res Clin Rheumatol 29:290–305CrossRefPubMedGoogle Scholar
  31. 31.
    Conaghan P, Bird P, Ejbjerg B et al (2005) The EULAR-OMERACT rheumatoid arthritis MRI reference image atlas: the metacarpophalangeal joints. Ann Rheum Dis 64:i11–i21CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Peterfy C, Emery P, Tak PP et al (2016) MRI assessment of suppression of structural damage in patients with rheumatoid arthritis receiving rituximab: results from the randomized, placebo-controlled, double-blind RA-SCORE study. Ann Rheum Dis 75:170–177CrossRefPubMedGoogle Scholar
  33. 33.
    Haavardsholm EA, Ostergaard M, Ejbjerg BJ et al (2005) Reliability and sensitivity to change of the OMERACT rheumatoid arthritis magnetic resonance imaging score in a multireader, longitudinal setting. Arthritis Rheum 52:3860–3867CrossRefPubMedGoogle Scholar
  34. 34.
    Glinatsi D, Bird P, Gandjbakhch F et al (2015) Validation of the OMERACT psoriatic arthritis magnetic resonance imaging score (PsAMRIS) for the hand and foot in a randomized placebo-controlled trial. J Rheumatol 42:2473–2479CrossRefPubMedGoogle Scholar
  35. 35.
    Boyesen P, McQueen FM, Gandjbakhch F et al (2011) The OMERACT psoriatic arthritis magnetic resonance imaging score (PsAMRIS) is reliable and sensitive to change: results from an OMERACT workshop. J Rheumatol 38:2034–2038CrossRefPubMedGoogle Scholar
  36. 36.
    Pache G, Krauss B, Strohm P et al (2010) Dual-enerrgy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions—feasibility study. Radiology 256:617–624CrossRefPubMedGoogle Scholar
  37. 37.
    Wang CK, Tsai JM, Chuang MT, Wang MT, Huang KY, Lin RM (2013) Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology 269:525–533CrossRefPubMedGoogle Scholar
  38. 38.
    Guggenberger R, Gnannt R, Hodler J et al (2012) Diagnostic performance of dual-energy CT for the detection of traumatic bone marrow lesions in the ankle: comparison with MR imaging. Radiology 264:164–173CrossRefPubMedGoogle Scholar
  39. 39.
    Diekhoff T, Scheel M, Hermann S, Mews J, Hamm B, Hermann KA (2017) Osteitis: a retrospective feasibility study comparing single-source dual-energy CT to MRI in selected patients with suspected acute gout. Skeletal Radiol 46:185–190CrossRefPubMedGoogle Scholar
  40. 40.
    Stomp W, Krabben A, van der Heijde D et al (2015) Aiming for a simpler early arthritis MRI protocol: can Gd contrast administration be eliminated? Eur Radiol 25:1520–1527CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2017

Authors and Affiliations

  1. 1.Department of RadiologyThe Jikei University School of MedicineTokyoJapan
  2. 2.Department of DermatologyThe Jikei University School of MedicineTokyoJapan
  3. 3.Division of Rheumatology Department of Internal MedicineThe Jikei University School of MedicineTokyoJapan

Personalised recommendations