Advertisement

European Radiology

, Volume 27, Issue 12, pp 4913–4922 | Cite as

Diffusion-weighted imaging versus contrast-enhanced MR imaging for the differentiation of renal oncocytomas and chromophobe renal cell carcinomas

  • Yan Zhong
  • Haiyi Wang
  • Yanguang Shen
  • Aitao Guo
  • Jia Wang
  • Suhai Kang
  • Lu Ma
  • Jingjing Pan
  • Huiyi Ye
Oncology

Abstract

Objectives

To compare the performance of diffusion-weighted imaging (DWI) with that of contrast-enhanced MRI in differentiating renal oncocytomas from chromophobe renal cell carcinomas (RCCs).

Methods

We recruited 48 patients with histopathologically confirmed renal oncocytomas (n=16) and chromophobe RCCs (n=32). All patients underwent preoperative DWI and contrast-enhanced MRI. Apparent diffusion coefficient (ADC) and signal intensity were measured in each patient. ADC ratio and percentage of signal intensity change were calculated.

Results

Mean ADC values for renal oncoctytomas were significantly higher than those for chromophobe RCCs (1.59±0.21 vs. 1.09±0.29× 10−3 mm2/s, p < 0.001). Area under the ROC curve, sensitivity and specificity were 0.931, 87.5% and 84.4%, respectively, for ADC measurement of DW imaging; 0.825, 87.5% and 75%, respectively, for enhancement ratio (p > 0.05). Adding ADC values to the enhancement ratios in the ROC, analysis to differentiate renal oncocytoma from chromophobe RCCs increased specificity from 75 to 87.5% at 87.5% sensitivity without significantly increasing the AUC (0.930).

Conclusions

Both DWI and contrast-enhanced MRI may assist in differentiating renal oncocytomas from chromophobe RCCs, with DWI showing higher diagnostic value. The combination of the two parameters could potentially provide better performance in distinguishing these two tumours.

Key Points

• ADC values can assist in differentiating renal oncocytomas from chromophobe RCCs.

• DW imaging possesses better specificity than does contrast-enhanced MR imaging.

• Combining the two parameters provides higher specificity regarding the differential diagnosis.

Keywords

Renal cell carcinoma Renal oncocytoma Magnetic resonance imaging Apparent diffusion coefficient Diffusion-weighted imaging 

Abbreviations

%SI

Percentage change in signal intensity

ADC

Apparent diffusion coefficient

AUC

Area under the curve

CCRCC

Clear cell renal cell carcinoma

CE

Contrast enhancement

DW

Diffusion-weighted

DWI

Diffusion-weighted imaging

ICC

Intraclass correlation coefficient (ICC)

MR

Magnetic resonance

MRI

Magnetic resonance imaging

NSS

Nephron-sparing surgery

PACS

Picture Archiving and Communication System

RCC

Renal cell carcinoma

ROC

Receiver operating characteristic

ROI

Region of interest

SEI

Segmental enhancement inversion

Notes

Acknowledgements

Jia Wang provided the reproducibility data of ADC measurement of CCRCCs.

Compliance with ethical standards

Guarantor

The scientific guarantor of this publication is Huiyi Ye.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Funding

The authors state that this work has not received any funding.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• diagnostic or prognostic study

• performed at one institution

References

  1. 1.
    Amin MB, Crotty TB, Tickoo SK et al (1997) Renal oncocytoma: a reappraisal of morphologic features with clinicopathologic findings in 80 cases. Am J Surg Pathol 21:1–12CrossRefPubMedGoogle Scholar
  2. 2.
    Ljungberg B, Bensalah K, Canfield S et al (2015) EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol 67:913–924CrossRefPubMedGoogle Scholar
  3. 3.
    Lopez-Beltran A, Scarpelli M, Montironi R et al (2006) 2004 WHO classification of the renal tumors of the adults. Eur Urol 49:798–805CrossRefPubMedGoogle Scholar
  4. 4.
    Oxley JD, Sullivan J, Mitchelmore A et al (2007) Metastatic renal oncocytoma. J Clin Pathol 60:720–722CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tickoo SK, Amin MB (1998) Discriminant nuclear features of renal oncocytoma and chromophobe renal cell carcinoma: analysis of their potential utility in the differential diagnosis. Am J Clin Pathol 110:782–787CrossRefPubMedGoogle Scholar
  6. 6.
    Ishigami K, Jones AR, Dahmoush L et al (2015) Imaging spectrum of renal oncocytomas: a pictorial review with pathologic correlation. Insights Imaging 6:53–64CrossRefPubMedGoogle Scholar
  7. 7.
    Rosenkrantz AB, Hindman N, Fitzgerald EF et al (2010) MRI features of renal oncocytoma and chromophobe renal cell carcinoma. AJR Am J of Roentgenol 195:W421–W427CrossRefGoogle Scholar
  8. 8.
    Schieda N, Al-Subhi M, Flood TA et al (2014) Diagnostic accuracy of segmental enhancement inversion for the diagnosis of renal oncocytoma using biphasic computed tomography (CT) and multiphase contrast-enhanced magnetic resonance imaging (MRI). Eur Radiol 24:2787–2794CrossRefPubMedGoogle Scholar
  9. 9.
    Cornelis F, Tricaud E, Lasserre AS et al (2014) Routinely performed multiparametric magnetic resonance imaging helps to differentiate common subtypes of renal tumours. Eurn Radiol 24:1068–1080CrossRefGoogle Scholar
  10. 10.
    Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang J, Tehrani YM, Wang L et al (2008) Renal masses: characterization with diffusion-weighted MR imaging--a preliminary experience. Radiology 247:458–464CrossRefPubMedGoogle Scholar
  12. 12.
    Taouli B, Thakur RK, Mannelli L et al (2009) Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology 251:398–407CrossRefPubMedGoogle Scholar
  13. 13.
    Kim S, Jain M, Harris AB et al (2009) T1 hyperintense renal lesions: characterization with diffusion-weighted MR imaging versus contrast-enhanced MR imaging. Radiology 251:796–807CrossRefPubMedGoogle Scholar
  14. 14.
    Sevcenco S, Heinz-Peer G, Ponhold L et al (2014) Utility and limitations of 3-Tesla diffusion-weighted magnetic resonance imaging for differentiation of renal tumors. Eur J Radiol 83:909–913CrossRefPubMedGoogle Scholar
  15. 15.
    Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lassel EA, Rao R, Schwenke C et al (2014) Diffusion-weighted imaging of focal renal lesions: a meta-analysis. Eur Radiol 24:241–249CrossRefPubMedGoogle Scholar
  17. 17.
    Razek AA, Farouk A, Mousa A et al (2011) Role of diffusion-weighted magnetic resonance imaging in characterization of renal tumors. J Comput Assist Tomogr 35:332–336CrossRefPubMedGoogle Scholar
  18. 18.
    Goya C, Hamidi C, Bozkurt Y et al (2015) The role of apparent diffusion coefficient quantification in differentiating benign and malignant renal masses by 3 Tesla magnetic resonance imaging. Balkan Med J 32:273–278CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lei Y, Wang H, Li HF et al (2015) Diagnostic significance of diffusion weighted MRI in renal cancer. Biomed Res Int 2015:172165PubMedPubMedCentralGoogle Scholar
  20. 20.
    Sandrasegaran K, Sundaram CP, Ramaswamy R et al (2010) Usefulness of diffusion-weighted imaging in the evaluation of renal masses. AJR Am J Roentgenol 194:438–445Google Scholar
  21. 21.
    Mirka H, Korcakova E, Kastner J et al (2015) Diffusion-weighted imaging using 3.0 T MRI as a possible biomarker of renal tumors. Anticancer Res 35:2351–2357PubMedGoogle Scholar
  22. 22.
    Hotker AM, Mazaheri Y, Wibmer A et al (2016) Use of DWI in the differentiation of renal cortical tumors. AJR Am J Roentgenol 206:100–105CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Le Bihan D (1988) Intravoxel incoherent motion imaging using steady-state free precession. Magn Reson Med 7:346–351CrossRefPubMedGoogle Scholar
  24. 24.
    Pedrosa I, Sun MR, Spencer M et al (2008) MR imaging of renal masses: correlation with findings at surgery and pathologic analysis. Radiographics 28:985–1003CrossRefPubMedGoogle Scholar
  25. 25.
    Goyal A, Sharma R, Bhalla AS et al (2012) Diffusion-weighted MRI in renal cell carcinoma: a surrogate marker for predicting nuclear grade and histological subtype. Acta Radiol 53:349–358Google Scholar
  26. 26.
    Vargas HA, Chaim J, Lefkowitz RA et al (2012) Renal cortical tumors: use of multiphasic contrast-enhanced MR imaging to differentiate benign and malignant histologic subtypes. Radiology 264:779–788CrossRefPubMedGoogle Scholar
  27. 27.
    Sun MR, Ngo L, Genega EM et al (2009) Renal cell carcinoma: dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes--correlation with pathologic findings. Radiology 250:793–802CrossRefPubMedGoogle Scholar
  28. 28.
    Wang H, Cheng L, Zhang X et al (2010) Renal cell carcinoma: diffusion-weighted MR imaging for subtype differentiation at 3.0 T. Radiology 257: 135–143.Google Scholar
  29. 29.
    Squillaci E, Manenti G, Cova M et al (2004) Correlation of diffusion-weighted MR imaging with cellularity of renal tumours. Anticancer Res 24:4175–4179PubMedGoogle Scholar
  30. 30.
    Lechevallier E, Andre M, Barriol D et al (2000) Fine-needle percutaneous biopsy of renal masses with helical CT guidance. Radiology 216:506–510CrossRefPubMedGoogle Scholar
  31. 31.
    Eshed I, Elias S, Sidi AA (2004) Diagnostic value of CT-guided biopsy of indeterminate renal masses. Clin Radiol 59:262–267CrossRefPubMedGoogle Scholar
  32. 32.
    Snyder ME, Bach A, Kattan MW et al (2006) Incidence of benign lesions for clinically localized renal masses smaller than 7 cm in radiological diameter: influence of sex. J Urol 176:2391–2395CrossRefPubMedGoogle Scholar
  33. 33.
    Marszalek M, Ponholzer A, Brössner C et al (2004) Elective open nephron-sparing surgery for renal masses: single-center experience with 129 consecutive patients. Urology 64:38–42CrossRefPubMedGoogle Scholar
  34. 34.
    Haifler M, Kutikov A (2017) Current role of renal biopsy in urologic practice. Urol Clin North Am 44:203–211CrossRefPubMedGoogle Scholar
  35. 35.
    Patel HD, Druskin SC, Rowe SP et al (2017) Surgical histopathology for suspected oncocytoma on renal mass biopsy: a systematic review and meta-analysis. BJU Int 119:661–666CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2017

Authors and Affiliations

  • Yan Zhong
    • 1
  • Haiyi Wang
    • 1
  • Yanguang Shen
    • 1
  • Aitao Guo
    • 2
  • Jia Wang
    • 3
  • Suhai Kang
    • 4
  • Lu Ma
    • 1
  • Jingjing Pan
    • 1
  • Huiyi Ye
    • 1
  1. 1.Department of RadiologyChinese PLA General HospitalBeijingChina
  2. 2.Department of PathologyChinese PLA General HospitalBeijingChina
  3. 3.Department of RadiologyHandan Central HospticalHebeiChina
  4. 4.X-ray Department264 Hospital of PLATaiyuanChina

Personalised recommendations