European Radiology

, Volume 27, Issue 12, pp 4995–5005 | Cite as

Intra-arterial therapy of neuroendocrine tumour liver metastases: comparing conventional TACE, drug-eluting beads TACE and yttrium-90 radioembolisation as treatment options using a propensity score analysis model

  • Duc Do Minh
  • Julius Chapiro
  • Boris Gorodetski
  • Qiang Huang
  • Cuihong Liu
  • Susanne Smolka
  • Lynn Jeanette Savic
  • David Wainstejn
  • MingDe Lin
  • Todd Schlachter
  • Bernhard Gebauer
  • Jean-François Geschwind



To compare efficacy, survival outcome and prognostic factors of conventional transarterial chemoembolisation (cTACE), drug-eluting beads TACE (DEB-TACE) and yttrium-90 radioembolisation (Y90) for the treatment of liver metastases from gastroenteropancreatic (GEP) neuroendocrine tumours (NELM).


This retrospective analysis included 192 patients (58.6 years mean age, 56% men) with NELM treated with cTACE (N = 122), DEB-TACE (N = 26) or Y90 (N = 44) between 2000 and 2014. Radiologic response to therapy was assessed according to Response Evaluation Criteria in Solid Tumours (RECIST) and World Health Organization (WHO) criteria using periprocedural MR imaging. Survival analysis included propensity score analysis (PSA), median overall survival (MOS), hepatic progression-free survival, Kaplan–Meier using log-rank test and the uni- and multivariate Cox proportional hazards model (MVA).


MOS of the entire study population was 28.8 months. As for cTACE, DEB-TACE and Y90, MOS was 33.8 months, 21.7 months and 23.6 months, respectively. According to the MVA, cTACE demonstrated a significantly longer MOS as compared to DEB-TACE (p <.01) or Y90 (p = .02). The 5-year survival rate after initial cTACE, DEB-TACE and Y90 was 28.2%, 10.3% and 18.5%, respectively.


Upon PSA, our study suggests significant survival benefits for patients treated with cTACE as compared to DEB-TACE and Y90. This data supports the therapeutic decision for cTACE as the primary intra-arterial therapy option in patients with unresectable NELM until proven otherwise.

Key Points

• cTACE achieved a significantly longer overall survival in patients with unresectable NELM.

• Patients treated with cTACE showed a prolonged hepatic progression-free survival.

• cTACE, DEB-TACE and Y90 radioembolisation demonstrated comparable safety and toxicity profiles.

• Age >70 years, extrahepatic metastases and tumour burden >50% were identified as negative predictors.

• Propensity score analysis suggests the superiority of cTACE over DEB-TACE and Y90.


Neuroendocrine tumours Chemoembolisation Drug-eluting beads, DEB Yttrium-90 radioembolisation, Y90 Propensity score 



Carcinoid tumour


Complete response


Conventional transarterial chemoembolisation


Drug-eluting beads TACE


Hepatocellular carcinoma


Hepatic progression-free survival


Hazard ratio


Intra-arterial therapy


Median overall survival


Minor response


Multivariate analyses


NET liver metastases


Neuroendocrine tumour


Overall survival


Progressive disease


Pancreatic NET (islet cell tumours)


Partial response


Propensity score analysis


Response evaluation criteria in solid tumours


Radiofrequency ablation


Liver tumour resection with curative intention


Stable disease


Univariate analyses


World Health Organization


Yttrium-90 radioembolisation



We kindly thank Yanhong Deng, Biostatistician, School of Public Health: Yale Center for Analytical Sciences (YCAS), for the statistical review and technical support.

Compliance with ethical standards


The scientific guarantor of this publication is Jean-Francois Geschwind, M.D.

Conflict of interest

The authors of this manuscript declare relationships with the following companies:

Jean-François Geschwind, M.D.:

Consultant: Biocompatibles/BTG, Bayer HealthCare, Guerbet, Nordion/BTG, Philips Healthcare and Jennerex

Founder and CEO PreScience Labs, LLC.; MingDe Lin: Employee: Philips Research North America, Cambridge, MA.


This study has received funding by

NIH/NCI (R01 CA206180), NIH/NCI (R01 CA160771): Prof. Dr. Jean-François Geschwind

Dr. MingDe Lin

Studienstiftung des Deutschen Volkes: Duc Do Minh

Rolf W. Günther Stiftung für Radiologische Wissenschaften: Duc Do Minh

Statistics and biometry

Yanhong Deng kindly provided statistical advice for this manuscript.

(Yanhong Deng, Biostatistician, School of Public Health: Yale Center for Analytical Sciences (YCAS))

Informed consent

Written informed consent was waived by the institutional review board.

Ethical approval

Institutional review board approval was obtained.


• retrospective

• diagnostic or prognostic study and observational

• performed at one institution

Supplementary material

330_2017_4856_MOESM1_ESM.docx (400 kb)
ESM 1 (DOCX 399 kb)


  1. 1.
    Steinmuller T et al (2008) Consensus guidelines for the management of patients with liver metastases from digestive (neuro)endocrine tumors: foregut, midgut, hindgut, and unknown primary. Neuroendocrinology 87:47–62CrossRefPubMedGoogle Scholar
  2. 2.
    Gupta S (2013) Intra-arterial liver-directed therapies for neuroendocrine hepatic metastases. Semin Interv Radiol 30:28–38CrossRefGoogle Scholar
  3. 3.
    Chamberlain RS et al (2000) Hepatic neuroendocrine metastases: does intervention alter outcomes? J Am Coll Surg 190:432–445CrossRefPubMedGoogle Scholar
  4. 4.
    Gupta S et al (2005) Hepatic arterial embolization and chemoembolization for the treatment of patients with metastatic neuroendocrine tumors: variables affecting response rates and survival. Cancer 104:1590–1602CrossRefPubMedGoogle Scholar
  5. 5.
    Moertel CG et al (1994) The management of patients with advanced carcinoid tumors and islet cell carcinomas. Ann Intern Med 120:302–309CrossRefPubMedGoogle Scholar
  6. 6.
    Ramage JK et al (2012) Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours (NETs). Gut 61:6–32CrossRefPubMedGoogle Scholar
  7. 7.
    Madoff DC et al (2006) Update on the management of neuroendocrine hepatic metastases. J Vasc Interv Radiol 17:1235–1249, quiz 1250CrossRefPubMedGoogle Scholar
  8. 8.
    Libicher M, Bovenschulte H (2009) Arterial embolization of hepatic metastases from neuroendocrine tumors. Radiologe 49:233–241CrossRefPubMedGoogle Scholar
  9. 9.
    Grillo F et al (2016) Twenty years of gastroenteropancreatic neuroendocrine tumors: is reclassification worthwhile and feasible? Endocrine 53:58–62CrossRefPubMedGoogle Scholar
  10. 10.
    Grillo F et al (2016) Grade increases in gastroenteropancreatic neuroendocrine tumor metastases compared to the primary tumor. Neuroendocrinology 103:452–459CrossRefPubMedGoogle Scholar
  11. 11.
    Oberg K, Castellano D (2011) Current knowledge on diagnosis and staging of neuroendocrine tumors. Cancer Metastasis Rev 30(Suppl 1):3–7CrossRefPubMedGoogle Scholar
  12. 12.
    Kulke MH et al (2012) Neuroendocrine tumors. J Natl Compr Cancer Netw 10:724–764CrossRefGoogle Scholar
  13. 13.
    Clark OH et al (2006) Neuroendocrine tumors. J Natl Compr Cancer Netw 4:102–138CrossRefGoogle Scholar
  14. 14.
    Liapi E, Geschwind JF (2011) Transcatheter arterial chemoembolization for liver cancer: is it time to distinguish conventional from drug-eluting chemoembolization? Cardiovasc Intervent Radiol 34:37–49CrossRefPubMedGoogle Scholar
  15. 15.
    Austin PC (2011) An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar Behav Res 46:399–424CrossRefGoogle Scholar
  16. 16.
    Lee BK, Lessler J, Stuart EA (2010) Improving propensity score weighting using machine learning. Stat Med 29:337–346PubMedPubMedCentralGoogle Scholar
  17. 17.
    McDonald RJ et al (2013) Behind the numbers: propensity score analysis—a primer for the diagnostic radiologist. Radiology 269:640–645CrossRefPubMedGoogle Scholar
  18. 18.
    Stone CA, Tang Y (2013) Comparing propensity score methods in balancing covariates and recovering impact in small sample educational program evaluations. Pract Assess Res Eval 18:12Google Scholar
  19. 19.
    Xie J, Liu C. Adjusted Kaplan–Meier estimator and log-rank test with inverse probability of treatment weighting for survival data. Stat Med 24:3089–110Google Scholar
  20. 20.
    Ridgeway G, McCaffrey DF, Morral AR, Burgette LF, Griffin BA (2014) Toolkit for weighting and analysis of nonequivalent groups (TWANG). RAND, Santa MonicaGoogle Scholar
  21. 21.
    Olmos A, Govindasamy P (2015) A practical guide for using propensity score weighting in R. Pract Assess Res Eval 20.
  22. 22.
    Yamagiwa K et al (2008) Survival rates according to the Cancer of the Liver Italian Program scores of 345 hepatocellular carcinoma patients after multimodality treatments during a 10-year period in a retrospective study. J Gastroenterol Hepatol 23:482–490CrossRefPubMedGoogle Scholar
  23. 23.
    Shen WF et al (2011) Adjuvant transcatheter arterial chemoembolization for intrahepatic cholangiocarcinoma after curative surgery: retrospective control study. World J Surg 35:2083–2091CrossRefPubMedGoogle Scholar
  24. 24.
    Bertani E et al (2014) Resection of the primary pancreatic neuroendocrine tumor in patients with unresectable liver metastases: possible indications for a multimodal approach. Surgery 155:607–614CrossRefPubMedGoogle Scholar
  25. 25.
    Kennedy A et al (2015) Role of hepatic intra-arterial therapies in metastatic neuroendocrine tumours (NET): guidelines from the NET-Liver-Metastases Consensus Conference. HPB 17:29–37CrossRefPubMedGoogle Scholar
  26. 26.
    Memon K et al (2012) Radioembolization for neuroendocrine liver metastases: safety, imaging, and long-term outcomes. Int J Radiat Oncol Biol Phys 83:887–894CrossRefPubMedGoogle Scholar
  27. 27.
    Ruutiainen AT et al (2007) Chemoembolization and bland embolization of neuroendocrine tumor metastases to the liver. J Vasc Interv Radiol 18:847–855CrossRefPubMedGoogle Scholar
  28. 28.
    Dong XD, Carr BI (2011) Hepatic artery chemoembolization for the treatment of liver metastases from neuroendocrine tumors: a long-term follow-up in 123 patients. Med Oncol 28(Suppl 1):S286–S290CrossRefPubMedGoogle Scholar
  29. 29.
    Carrasco CH et al (1986) The carcinoid syndrome: palliation by hepatic artery embolization. AJR Am J Roentgenol 147:149–154CrossRefPubMedGoogle Scholar
  30. 30.
    Wiggermann P et al (2011) Transarterial chemoembolization of Child-A hepatocellular carcinoma: drug-eluting bead TACE (DEB TACE) vs. TACE with cisplatin/lipiodol (cTACE). Med Sci Monit 17:CR189–CR195CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lammer J et al (2010) Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol 33:41–52CrossRefPubMedGoogle Scholar
  32. 32.
    Brown DB et al (2009) Transcatheter therapy for hepatic malignancy: standardization of terminology and reporting criteria. J Vasc Interv Radiol 20(Suppl 7):S425–S434CrossRefPubMedGoogle Scholar
  33. 33.
    de Baere T et al (2008) Transarterial chemoembolization of liver metastases from well differentiated gastroenteropancreatic endocrine tumors with doxorubicin-eluting beads: preliminary results. J Vasc Interv Radiol 19:855–861CrossRefPubMedGoogle Scholar
  34. 34.
    Whitney R et al (2011) Transarterial chemoembolization and selective internal radiation for the treatment of patients with metastatic neuroendocrine tumors: a comparison of efficacy and cost. Oncologist 16:594–601CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Poon RT et al (2007) A phase I/II trial of chemoembolization for hepatocellular carcinoma using a novel intra-arterial drug-eluting bead. Clin Gastroenterol Hepatol 5:1100–1108CrossRefPubMedGoogle Scholar
  36. 36.
    Bhagat N et al (2013) Phase II study of chemoembolization with drug-eluting beads in patients with hepatic neuroendocrine metastases: high incidence of biliary injury. Cardiovasc Intervent Radiol 36:449–459CrossRefPubMedGoogle Scholar
  37. 37.
    Monier A et al (2017) Liver and biliary damages following transarterial chemoembolization of hepatocellular carcinoma: comparison between drug-eluting beads and lipiodol emulsion. Eur Radiol 27:1431–1439CrossRefPubMedGoogle Scholar
  38. 38.
    Therasse E et al (1993) Transcatheter chemoembolization of progressive carcinoid liver metastasis. Radiology 189:541–547CrossRefPubMedGoogle Scholar
  39. 39.
    Kennedy AS et al (2008) Radioembolization for unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres: early results in 148 patients. Am J Clin Oncol 31:271–279CrossRefPubMedGoogle Scholar
  40. 40.
    McStay MK et al (2005) Large-volume liver metastases from neuroendocrine tumors: hepatic intraarterial 90Y-DOTA-lanreotide as effective palliative therapy. Radiology 237:718–726CrossRefPubMedGoogle Scholar
  41. 41.
    Liu DM et al (2009) Minimally invasive techniques in management of hepatic neuroendocrine metastatic disease. Am J Clin Oncol 32:200–215CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2017

Authors and Affiliations

  • Duc Do Minh
    • 1
    • 2
  • Julius Chapiro
    • 2
  • Boris Gorodetski
    • 1
    • 2
  • Qiang Huang
    • 2
    • 3
  • Cuihong Liu
    • 2
    • 4
  • Susanne Smolka
    • 1
    • 2
  • Lynn Jeanette Savic
    • 1
    • 2
  • David Wainstejn
    • 1
    • 2
  • MingDe Lin
    • 2
    • 5
  • Todd Schlachter
    • 2
  • Bernhard Gebauer
    • 1
  • Jean-François Geschwind
    • 2
    • 6
  1. 1.Department of Diagnostic and Interventional RadiologyCharité Universitätsmedizin, Campus Virchow KlinikumBerlinGermany
  2. 2.Department of Radiology and Biomedical ImagingYale University School of MedicineNew HavenUSA
  3. 3.Department of Interventional Radiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
  4. 4.The Ultrasound DepartmentShandong Provincial Hospital Affiliated to Shandong UniversityJinanChina
  5. 5.U/S Imaging and Interventions (UII)Philips Research North AmericaCambridgeUSA
  6. 6.Department of Radiology and Biomedical ImagingYale University School of MedicineNew HavenUSA

Personalised recommendations