European Radiology

, Volume 27, Issue 8, pp 3156–3166 | Cite as

Dynamic contrast-enhanced MR imaging in predicting progression of enhancing lesions persisting after standard treatment in glioblastoma patients: a prospective study

  • Roh-Eul Yoo
  • Seung Hong Choi
  • Tae Min Kim
  • Chul-Kee Park
  • Sung-Hye Park
  • Jae-Kyung Won
  • Il Han Kim
  • Soon Tae Lee
  • Hye Jeong Choi
  • Sung-Hye You
  • Koung Mi Kang
  • Tae Jin Yun
  • Ji-Hoon Kim
  • Chul-Ho Sohn
Neuro
  • 370 Downloads

Abstract

Objectives

To prospectively explore the value of dynamic contrast-enhanced magnetic resonance imaging (DCE–MRI) in predicting the progression of enhancing lesions persisting after standard treatment in patients with surgically resected glioblastoma (GBM).

Methods

Forty-seven GBM patients, who underwent near-total tumorectomy followed by concurrent chemoradiation therapy (CCRT) with temozolomide (TMZ) between May 2014 and February 2016, were enrolled. Twenty-four patients were finally analyzed for measurable enhancing lesions persisting after standard treatment. DCE-MRI parameters were calculated at enhancing lesions. Mann–Whitney U tests and multivariable stepwise logistic regression were used to compare parameters between progression (n = 16) and non-progression (n = 8) groups.

Results

Mean Ktrans and ve were significantly lower in progression than in non-progression (P = 0.037 and P = 0.037, respectively). The 5th percentile of the cumulative Ktrans histogram was also significantly lower in the progression than in non-progression group (P = 0.017). Mean ve was the only independent predictor of progression (P = 0.007), with a sensitivity of 100%, specificity of 63%, and an overall accuracy of 88% at a cut-off value of 0.873.

Conclusions

DCE-MRI may help predict the progression of enhancing lesions persisting after the completion of standard treatment in patients with surgically resected GBM, with mean ve serving as an independent predictor of progression.

Key points

Enhancing lesions may persist after standard treatment in GBM patients.

DCE-MRI may help predict the progression of the enhancing lesions.

Mean Ktransand vewere lower in progression than in non-progression group.

DCE-MRI may help identify patients requiring close follow-up after standard treatment.

DCE-MRI may help plan treatment strategies for GBM patients.

Keywords

Chemoradiotherapy Glioblastoma Magnetic resonance imaging Perfusion Progression 

Abbreviations

AIF

Arterial input function

BBB

Blood–brain barrier

CBV

Cerebral blood volume

CCRT

Concurrent radiation therapy and chemotherapy

CI

Confidence interval

DCE

Dynamic contrast-enhanced

F-FMISO

18F-fluoromisonidazole

FLAIR

Fluid-attenuated inversion recovery sequence

FOV

Field of view

GBM

Glioblastoma

IQR

Interquartile range

MGMT

O6-Methylguanine DNA methyltransferase

MPRAGE

Magnetization-prepared rapid acquisition gradient echo

NEX

Number of excitations

RANO

Response assessment in neuro-oncology

ROC

Receiver operating characteristic

ROI

Region of interest

TE

Echo time

TI

Inversion time

TMZ

Temozolomide

TR

Repetition time

T1WI

T1-weighted imaging

T2WI

T2-weighted imaging

References

  1. 1.
    Haroon HA, Buckley DL, Patankar TA et al (2004) A comparison of Ktrans measurements obtained with conventional and first pass pharmacokinetic models in human gliomas. J Magn Reson Imaging 19:527–536CrossRefPubMedGoogle Scholar
  2. 2.
    Harrer JU, Parker GJ, Haroon HA et al (2004) Comparative study of methods for determining vascular permeability and blood volume in human gliomas. J Magn Reson Imaging 20:748–757CrossRefPubMedGoogle Scholar
  3. 3.
    Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232CrossRefPubMedGoogle Scholar
  4. 4.
    Jia Z, Geng D, Xie T, Zhang J, Liu Y (2012) Quantitative analysis of neovascular permeability in glioma by dynamic contrast-enhanced MR imaging. J Clin Neurosci 19:820–823CrossRefPubMedGoogle Scholar
  5. 5.
    Jung SC, Yeom JA, Kim JH et al (2014) Glioma: Application of histogram analysis of pharmacokinetic parameters from T1-weighted dynamic contrast-enhanced MR imaging to tumor grading. AJNR Am J Neuroradiol 35:1103–1110CrossRefPubMedGoogle Scholar
  6. 6.
    Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMedGoogle Scholar
  7. 7.
    Yun TJ, Park CK, Kim TM et al (2015) Glioblastoma treated with concurrent radiation therapy and temozolomide chemotherapy: differentiation of true progression from pseudoprogression with quantitative dynamic contrast-enhanced MR imaging. Radiology 274:830–840CrossRefPubMedGoogle Scholar
  8. 8.
    Kim JH, Choi SH, Ryoo I et al (2014) Prognosis prediction of measurable enhancing lesion after completion of standard concomitant chemoradiotherapy and adjuvant temozolomide in glioblastoma patients: application of dynamic susceptibility contrast perfusion and diffusion-weighted imaging. PLoS One 9, e113587CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972CrossRefPubMedGoogle Scholar
  10. 10.
    Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367CrossRefPubMedGoogle Scholar
  11. 11.
    Haacke EM, Filleti CL, Gattu R et al (2007) New algorithm for quantifying vascular changes in dynamic contrast-enhanced MRI independent of absolute T1 values. Magn Reson Med 58:463–472CrossRefPubMedGoogle Scholar
  12. 12.
    Pluim JP, Maintz JB, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22:986–1004CrossRefPubMedGoogle Scholar
  13. 13.
    Sundar H, Shen D, Biros G, Xu C, Davatzikos C (2007) Robust computation of mutual information using spatially adaptive meshes. Med Image Comput Comput Assist Interv 10:950–958PubMedGoogle Scholar
  14. 14.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefPubMedGoogle Scholar
  15. 15.
    Hauck WW, Miike R (1991) A proposal for examining and reporting stepwise regressions. Stat Med 10:711–715CrossRefPubMedGoogle Scholar
  16. 16.
    Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25CrossRefPubMedGoogle Scholar
  17. 17.
    de Vries NA, Beijnen JH, Boogerd W, van Tellingen O (2006) Blood-brain barrier and chemotherapeutic treatment of brain tumors. Expert Rev Neurother 6:1199–1209CrossRefPubMedGoogle Scholar
  18. 18.
    Dewhirst MW (1998) Concepts of oxygen transport at the microcirculatory level. Semin Radiat Oncol 8:143–150CrossRefPubMedGoogle Scholar
  19. 19.
    Gulledge CJ, Dewhirst MW (1996) Tumor oxygenation: a matter of supply and demand. Anticancer Res 16:741–749PubMedGoogle Scholar
  20. 20.
    Perini R, Choe R, Yodh AG, Sehgal C, Divgi CR, Rosen MA (2008) Non-invasive assessment of tumor neovasculature: techniques and clinical applications. Cancer Metastasis Rev 27:615–630CrossRefPubMedGoogle Scholar
  21. 21.
    Pettersen EO, Ebbesen P, Gieling RG et al (2015) Targeting tumour hypoxia to prevent cancer metastasis. From biology, biosensing and technology to drug development: the METOXIA consortium. J Enzyme Inhib Med Chem 30:689–721CrossRefPubMedGoogle Scholar
  22. 22.
    Barsoum IB, Smallwood CA, Siemens DR, Graham CH (2014) A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 74:665–674CrossRefPubMedGoogle Scholar
  23. 23.
    Calcinotto A, Filipazzi P, Grioni M et al (2012) Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res 72:2746–2756CrossRefPubMedGoogle Scholar
  24. 24.
    Casazza A, Di Conza G, Wenes M, Finisguerra V, Deschoemaeker S, Mazzone M (2014) Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment. Oncogene 33:1743–1754CrossRefPubMedGoogle Scholar
  25. 25.
    Colegio OR, Chu NQ, Szabo AL et al (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513:559–563CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Finger EC, Giaccia AJ (2010) Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev 29:285–293CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322CrossRefPubMedGoogle Scholar
  29. 29.
    Keith B, Johnson RS, Simon MC (2012) HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12:9–22Google Scholar
  30. 30.
    Motz GT, Coukos G (2013) Deciphering and reversing tumor immune suppression. Immunity 39:61–73CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Palazon A, Aragones J, Morales-Kastresana A, de Landazuri MO, Melero I (2012) Molecular pathways: hypoxia response in immune cells fighting or promoting cancer. Clin Cancer Res 18:1207–1213CrossRefPubMedGoogle Scholar
  33. 33.
    Semenza GL (2014) Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol 9:47–71CrossRefPubMedGoogle Scholar
  34. 34.
    Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11:393–410CrossRefPubMedGoogle Scholar
  35. 35.
    Kikuchi M, Yamane T, Shinohara S et al (2011) 18F-fluoromisonidazole positron emission tomography before treatment is a predictor of radiotherapy outcome and survival prognosis in patients with head and neck squamous cell carcinoma. Ann Nucl Med 25:625–633CrossRefPubMedGoogle Scholar
  36. 36.
    Kobayashi H, Hirata K, Yamaguchi S, Terasaka S, Shiga T, Houkin K (2013) Usefulness of FMISO-PET for glioma analysis. Neurol Med Chir (Tokyo) 53:773–778CrossRefGoogle Scholar
  37. 37.
    Krohn KA, Link JM, Mason RP (2008) Molecular imaging of hypoxia. J Nucl Med 49(Suppl 2):129S–148SCrossRefPubMedGoogle Scholar
  38. 38.
    Rischin D, Hicks RJ, Fisher R et al (2006) Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 24:2098–2104CrossRefPubMedGoogle Scholar
  39. 39.
    Cooper RA, Carrington BM, Loncaster JA et al (2000) Tumour oxygenation levels correlate with dynamic contrast-enhanced magnetic resonance imaging parameters in carcinoma of the cervix. Radiother Oncol 57:53–59CrossRefPubMedGoogle Scholar
  40. 40.
    Egeland TA, Gulliksrud K, Gaustad JV, Mathiesen B, Rofstad EK (2012) Dynamic contrast-enhanced-MRI of tumor hypoxia. Magn Reson Med 67:519–530CrossRefPubMedGoogle Scholar
  41. 41.
    Jensen RL, Mumert ML, Gillespie DL, Kinney AY, Schabel MC, Salzman KL (2014) Preoperative dynamic contrast-enhanced MRI correlates with molecular markers of hypoxia and vascularity in specific areas of intratumoral microenvironment and is predictive of patient outcome. Neuro Oncol 16:280–291CrossRefPubMedGoogle Scholar
  42. 42.
    Rajendran JG, Krohn KA (2015) F-18 fluoromisonidazole for imaging tumor hypoxia: imaging the microenvironment for personalized cancer therapy. Semin Nucl Med 45:151–162CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Cao VT, Jung TY, Jung S et al (2009) He correlation and prognostic significance of MGMT promoter methylation and MGMT protein in glioblastomas. Neurosurgery 65:866–875CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2016

Authors and Affiliations

  • Roh-Eul Yoo
    • 1
  • Seung Hong Choi
    • 1
    • 2
    • 3
  • Tae Min Kim
    • 4
  • Chul-Kee Park
    • 5
  • Sung-Hye Park
    • 6
  • Jae-Kyung Won
    • 6
  • Il Han Kim
    • 7
  • Soon Tae Lee
    • 8
  • Hye Jeong Choi
    • 1
  • Sung-Hye You
    • 1
  • Koung Mi Kang
    • 1
  • Tae Jin Yun
    • 1
  • Ji-Hoon Kim
    • 1
  • Chul-Ho Sohn
    • 1
  1. 1.Department of RadiologySeoul National University College of MedicineSeoulKorea
  2. 2.Center for Nanoparticle Research, Institute for Basic Science, and School of Chemical and Biological EngineeringSeoul National UniversitySeoulKorea
  3. 3.School of Chemical and Biological EngineeringSeoul National UniversitySeoulKorea
  4. 4.Department of Internal Medicine, Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
  5. 5.Department of Neurosurgery, Biomedical Research InstituteSeoul National University College of MedicineSeoulKorea
  6. 6.Department of PathologySeoul National University College of MedicineSeoulKorea
  7. 7.Department of Radiation Oncology, Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
  8. 8.Department of NeurologySeoul National University College of MedicineSeoulKorea

Personalised recommendations