Advertisement

European Radiology

, Volume 26, Issue 9, pp 2956–2963 | Cite as

Early quantitative CT perfusion parameters variation for prediction of delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage

  • Christine Rodriguez-Régent
  • Monia Hafsa
  • Guillaume Turc
  • Wagih Ben Hassen
  • Myriam Edjlali
  • Alain Sermet
  • Nathalie Laquay
  • Denis Trystram
  • Fawaz Al-Shareef
  • Jean-Francois Meder
  • Bertrand Devaux
  • Catherine Oppenheim
  • Olivier NaggaraEmail author
Neuro

Abstract

Objectives

To prospectively evaluate the predictive value of cerebral perfusion–computerized tomography (CTP) parameters variation between day0 and day4 after aneurysmal subarachnoid haemorrhage (aSAH).

Methods

Mean transit time (MTT) and cerebral blood flow (CBF) values were compared between patients with delayed cerebral ischemia (DCI+ group) and patients without DCI (DCI- group) for previously published optimal cutoff values and for variations of MTT (ΔMTT) and of CBF (ΔCBF) values between day0 and day4. DCI+ was defined as a cerebral infarction on 3-months follow-up MRI.

Results

Among 47 included patients, 10 suffered DCI+. Published optimal cutoff values did not predict DCI, either at day0 or at day4. Conversely, ΔMTT and ΔCBF significantly differed between the DCI+ and DCI- groups, with optimal ΔMTT and ΔCBF values of 0.91 seconds (83.9 % sensitivity, 79.5 % specificity, AUC 0.84) and -7.6 mL/100 g/min (100 % sensitivity, 71.4 % specificity, AUC 0.86), respectively. In multivariate analysis, ΔCBF (OR = 1.91, IC95% 1.13–3.23 per each 20 % decrease of ΔCBF) and ΔMTT values (OR = 14.70, IC95% 4.85–44.52 per each 20 % increase of ΔMTT) were independent predictors of DCI.

Conclusions

Assessment of MTT and CBF value variations between day0 and day4 may serve as an early imaging surrogate for prediction of DCI in aSAH.

Key points

CT perfusion values are an imaging surrogate for prediction of DCI.

Early variations (day0day4) after aneurysmal subarachnoid haemorrhage predicted DCI.

A CBF decrease of 7.6 mL/min/100 g predicted DCI with 100 % sensitivity.

An MTT increase of 0.91 seconds predicted DCI with 83.9 % sensitivity.

DCI risk multiplied by 2 per 20 % ΔCBF decrease and by 15 per 20 % ΔMTT increase.

Keywords

Cerebral vasospasm Delayed cerebral ischemia CT perfusion Subarachnoid haemorrhage Prediction 

Notes

Acknowledgments

The scientific guarantor of this publication is Olivier Naggara. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional review board approval was obtained. Written informed consent was obtained for each patient. No study subjects or cohorts have been previously reported. Methodology: prospective, diagnostic or prognostic study, performed at one institution.

References

  1. 1.
    Roos YB, de Haan RJ, Beenen LF, Groen RJ, Albrecht KW, Vermeulen M (2000) Complications and outcome in patients with aneurysmal subarachnoid haemorrhage: a prospective hospital based cohort study in the Netherlands. J Neurol Neurosurg Psychiatry 68:337–341CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rabinstein AA, Friedman JA, Weigand SD et al (2004) Predictors of cerebral infarction in aneurysmal subarachnoid hemorrhage. Stroke 35:1862–1866CrossRefPubMedGoogle Scholar
  3. 3.
    Frontera JA, Fernandez A, Schmidt JM et al (2009) Defining vasospasm after subarachnoid hemorrhage: what is the most clinically relevant definition? Stroke 40:1963–1968CrossRefPubMedGoogle Scholar
  4. 4.
    Vergouwen MD, Vermeulen M, van Gijn J et al (2010) Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke 41:2391–2395CrossRefPubMedGoogle Scholar
  5. 5.
    van Gijn J, Kerr RS, Rinkel GJ (2007) Subarachnoid haemorrhage. Lancet 369:306–318CrossRefPubMedGoogle Scholar
  6. 6.
    Hackett ML, Anderson CS (2000) Health outcomes 1 year after subarachnoid hemorrhage: an international population-based study. Aust Coop Res Subarachnoid Hemorrhage Study Group Neurol 55:658–662Google Scholar
  7. 7.
    Ohkuma H, Manabe H, Tanaka M, Suzuki S (2000) Impact of cerebral microcirculatory changes on cerebral blood flow during cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke 31:1621–1627CrossRefPubMedGoogle Scholar
  8. 8.
    Wintermark M, Ko NU, Smith WS, Liu S, Higashida RT, Dillon WP (2006) Vasospasm after subarachnoid hemorrhage: utility of perfusion CT and CT angiography on diagnosis and management. AJNR Am J Neuroradiol 27:26–34PubMedGoogle Scholar
  9. 9.
    Dankbaar JW, de Rooij NK, Rijsdijk M et al (2010) Diagnostic threshold values of cerebral perfusion measured with computed tomography for delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Stroke 41:1927–1932CrossRefPubMedGoogle Scholar
  10. 10.
    Sanelli PC, Jou A, Gold R et al (2011) Using CT perfusion during the early baseline period in aneurysmal subarachnoid hemorrhage to assess for development of vasospasm. Neuroradiology 53:425–434CrossRefPubMedGoogle Scholar
  11. 11.
    Mir DI, Gupta A, Dunning A et al (2014) CT perfusion for detection of delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. AJNR Am J Neuroradiol 35:866–871CrossRefPubMedGoogle Scholar
  12. 12.
    Kudo K, Sasaki M, Yamada K et al (2010) Differences in CT perfusion maps generated by different commercial software: quantitative analysis by using identical source data of acute stroke patients. Radiology 254:200–209CrossRefPubMedGoogle Scholar
  13. 13.
    Zussman BM, Boghosian G, Gorniak RJ et al (2011) The relative effect of vendor variability in CT perfusion results: a method comparison study. AJR Am J Roentgenol 197:468–473CrossRefPubMedGoogle Scholar
  14. 14.
    Fahmi F, Marquering HA, Streekstra GJ et al (2012) Differences in CT perfusion summary maps for patients with acute ischemic stroke generated by 2 software packages. AJNR Am J Neuroradiol 33:2074–2080CrossRefPubMedGoogle Scholar
  15. 15.
    Kudo K, Sasaki M, Ogasawara K, Terae S, Ehara S, Shirato H (2009) Difference in tracer delay-induced effect among deconvolution algorithms in CT perfusion analysis: quantitative evaluation with digital phantoms. Radiology 251:241–249CrossRefPubMedGoogle Scholar
  16. 16.
    Sanelli PC, Anumula N, Johnson CE et al (2013) Evaluating CT perfusion using outcome measures of delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage. AJNR Am J Neuroradiol 34:292–298CrossRefPubMedGoogle Scholar
  17. 17.
    Dankbaar JW, de Rooij NK, Velthuis BK, Frijns CJ, Rinkel GJ, van der Schaaf IC (2009) Diagnosing delayed cerebral ischemia with different CT modalities in patients with subarachnoid hemorrhage with clinical deterioration. Stroke 40:3493–3498CrossRefPubMedGoogle Scholar
  18. 18.
    Eastwood JD, Lev MH, Azhari T et al (2002) CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology 222:227–236CrossRefPubMedGoogle Scholar
  19. 19.
    Laslo AM, Eastwood JD, Pakkiri P, Chen F, Lee TY (2008) CT perfusion-derived mean transit time predicts early mortality and delayed vasospasm after experimental subarachnoid hemorrhage. AJNR Am J Neuroradiol 29:79–85CrossRefPubMedGoogle Scholar
  20. 20.
    Nabavi DG, LeBlanc LM, Baxter B et al (2001) Monitoring cerebral perfusion after subarachnoid hemorrhage using CT. Neuroradiology 43:7–16CrossRefPubMedGoogle Scholar
  21. 21.
    Knuckey NW, Fox RA, Surveyor I, Stokes BA (1985) Early cerebral blood flow and computerized tomography in predicting ischemia after cerebral aneurysm rupture. J Neurosurg 62:850–855CrossRefPubMedGoogle Scholar
  22. 22.
    Milburn JM, Moran CJ, Cross DT 3rd, Diringer MN, Pilgram TK, Dacey RG Jr (1997) Effect of intraarterial papaverine on cerebral circulation time. AJNR Am J Neuroradiol 18:1081–1085PubMedGoogle Scholar
  23. 23.
    Emmer BJ, Rijkee M, Niesten JM, Wermer MJ, Velthuis BK, van Walderveen MA (2014) Whole brain CT perfusion in acute anterior circulation ischemia: coverage size matters. NeuroradiologyGoogle Scholar
  24. 24.
    Abels B, Villablanca JP, Tomandl BF, Uder M, Lell MM (2012) Acute stroke: a comparison of different CT perfusion algorithms and validation of ischaemic lesions by follow-up imaging. Eur Radiol 22:2559–2567CrossRefPubMedGoogle Scholar
  25. 25.
    Sasaki M, Kudo K, Boutelier T et al (2013) Assessment of the accuracy of a Bayesian estimation algorithm for perfusion CT by using a digital phantom. Neuroradiology 55:1197–1203CrossRefPubMedGoogle Scholar
  26. 26.
    Imanishi Y, Fukui A, Niimi H et al (2005) Radiation-induced temporary hair loss as a radiation damage only occurring in patients who had the combination of MDCT and DSA. Eur Radiol 15:41–46CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2015

Authors and Affiliations

  • Christine Rodriguez-Régent
    • 1
  • Monia Hafsa
    • 1
  • Guillaume Turc
    • 2
  • Wagih Ben Hassen
    • 1
  • Myriam Edjlali
    • 1
  • Alain Sermet
    • 3
  • Nathalie Laquay
    • 3
  • Denis Trystram
    • 1
  • Fawaz Al-Shareef
    • 1
  • Jean-Francois Meder
    • 1
  • Bertrand Devaux
    • 4
  • Catherine Oppenheim
    • 1
  • Olivier Naggara
    • 1
    Email author
  1. 1.Departments of Neuroradiology, Centre Hospitalier Sainte-AnneUniversité Paris DescartesParisFrance
  2. 2.Department of Neurology, Centre Hospitalier Sainte-AnneUniversité Paris-DescartesParisFrance
  3. 3.Department of ReanimationCentre Hospitalier Sainte-AnneParisFrance
  4. 4.Department of Neurosurgery, Centre Hospitalier Sainte-AnneUniversité Paris-DescartesParisFrance

Personalised recommendations