Skip to main content
Log in

Aberrant supracallosal longitudinal bundle: MR features, pathogenesis and associated clinical phenotype

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To describe the MRI and structural features of a peculiar malformation of the corpus callosum (CC) in a group of young patients with intellectual disability.

Methods

We studied with conventional MRI and DTI a group of subjects showing an aberrant supracallosal bundle, characterized by the presence of a triangle-shaped bulging above the dorsal surface of CC on the midline. Clinical evaluations, CGH-array and instrumental analysis were also collected.

Results

Among 85 patients with malformed CC, we identified 15 subjects that showed the supracallosal bundle. The CC was thickened in five cases, long and thinned in three cases, short and thinned in three cases and it had a “ribbon-like” appearance in four subjects. Additional brain anomalies were present in eight cases. DTI colour maps and tractography showed that the bundle had an antero-posterior longitudinal orientation and that the tract bifurcated posteriorly, ending in the posterior hippocampi. Patients had different combinations of neurological symptoms, but all showed mild or severe intellectual disability.

Conclusions

Combining radiological and genetic data with embryological knowledge of the development of cerebral commissures, we hypothesize that the supracallosal bundle represents a vestigial structure, the dorsal fornix, present during fetal life. Its persistence is associated with intellectual disability.

Key Points

An aberrant longitudinal bundle can be detected above corpus callosum.

The presence of the supracallosal bundle is associated with intellectual disability.

The supracallosal bundle may represent a persistent dorsal fornix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CC:

Corpus callosum

DTI:

Diffusion tensor imaging

VF:

Volume fraction

FA:

Fractional anisotropy

AD:

Axial diffusivity

RD:

Radial diffusivity

MD:

Mean diffusivity

ROI:

Region of interest

IG:

Indusium griseum

References

  1. Edwards TJ, Sherr EH, Barkovich AJ, Richards LJ (2014) Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. Brain 137:1579–1613

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rakic P, Yakovlev PI (1968) Development of the corpus callosum and cavum septi in man. J Comp Neurol 132:45–72

    Article  CAS  PubMed  Google Scholar 

  3. Raybaud C (2010) The corpus callosum, the other great forebrain commissures, and the septum pellucidum: anatomy, development, and malformation. Neuroradiology 52:447–477

    Article  PubMed  Google Scholar 

  4. Rollins NK (2013) Diffusion imaging of the congenitally thickened corpus callosum. AJNR Am J Neuroradiol 34:660–665

    Article  CAS  PubMed  Google Scholar 

  5. Friede RL, Briner J (1978) Midline hyperplasia with malformation of the fornical system. Neurology 28:1302–1305

    Article  CAS  PubMed  Google Scholar 

  6. Malobabic S, Puskas L, Vela A (1988) Enlarged medial longitudinal (supracallosal) stria in one human brain. Acta Biol Med Exp 13:87–90

    Google Scholar 

  7. Reinhold S, Laas R (1989) Longitudinal supracallosal bundles without callosal defect. Clin Neuropathol 8:246–247

    Google Scholar 

  8. Sy J, Alturkustani M, Ang LC (2010) Intracallosal longitudinal fiber bundle: an unexpected finding mimicking demyelination in a patient with turner syndrome. Acta Neuropathol 120:545–547

    Article  PubMed  Google Scholar 

  9. Hori A, Stan AC (2004) Supracallosal longitudinal fiber bundle: heterotopic cingulum, dorsal fornix or probst bundle? Neuropathology 24:56–59

    Article  PubMed  Google Scholar 

  10. Poretti A, Meoded A, Rossi A, Raybaud C, Huisman TA (2013) Diffusion tensor imaging and fiber tractography in brain malformations. Pediatr Radiol 43:28–54

    Article  PubMed  Google Scholar 

  11. Garel C, Cont I, Alberti C, Josserand E, Moutard ML, Ducou le Pointe H (2011) Biometry of the corpus callosum in children: MR imaging reference data. AJNR Am J Neuroradiol 32:1436–1443

    Article  CAS  PubMed  Google Scholar 

  12. Wahl M, Strominger Z, Jeremy RJ et al (2009) Variability of homotopic and heterotopic callosal connectivity in partial agenesis of the corpus callosum: a 3T diffusion tensor imaging and Q-ball tractography study. AJNR Am J Neuroradiol 30:282–289

    Article  CAS  PubMed  Google Scholar 

  13. Koob M, Weingertner AS, Gasser B, Oubel E, Dietemann JL (2012) Thick corpus callosum: a clue to the diagnosis of fetal septopreoptic holoprosencephaly? Pediatr Radiol 42:886–890

    Article  PubMed  Google Scholar 

  14. Lerman-Sagie T, Ben-Sira L, Achiron R et al (2009) Thick fetal corpus callosum: an ominous sign? Ultrasound Obstet Gynecol 34:55–61

    Article  CAS  PubMed  Google Scholar 

  15. Rypens F, Sonigo P, Aubry MC, Delezoide AL, Cessot F, Brunelle F (1996) Prenatal MR diagnosis of a thick corpus callosum. AJNR Am J Neuroradiol 17:1918–1920

    CAS  PubMed  Google Scholar 

  16. Vachha B, Adams RC, Rollins NK (2006) Limbic tract anomalies in pediatric myelomeningocele and chiari II malformation: anatomic correlations with memory and learning--initial investigation. Radiology 240:194–202

    Article  PubMed  Google Scholar 

  17. Fish PA (1893) The indusium of the callosum. J Comp Neurol 3:61–68

    Article  Google Scholar 

  18. Smith GE (1897) The morphology of the indusium and striae lancisii. Anat Anz 13:23–27

    Google Scholar 

  19. Pavlovic S, Stefanovic N, Malobabic S, Babic Z, Kostic A, Pavlovic M (2009) Longitudinal striae of the human fornix: shape, relations and variations. Surg Radiol Anat 31:501–506

    Article  PubMed  Google Scholar 

  20. Tubbs RS, Prekupec M, Loukas M, Hattab EM, Cohen-Gadol AA (2013) The indusium griseum: anatomic study with potential application to callosotomy. Neurosurgery 73:312–316

    Article  PubMed  Google Scholar 

  21. Ren T, Anderson A, Shen WB et al (2006) Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain. Anat Rec A: Discov Mol Cell Evol Biol 288:191–204

    Article  Google Scholar 

  22. Shu T, Richards LJ (2001) Cortical axon guidance by the glial wedge during the development of the corpus callosum. J Neurosci 21:2749–2758

    CAS  PubMed  Google Scholar 

  23. Nakada T (1999) High-field, high-resolution MR imaging of the human indusium griseum. AJNR Am J Neuroradiol 20:524–525

    CAS  PubMed  Google Scholar 

  24. Di Ieva A, Tschabitscher M, Rodriguez y Baena R (2007) Lancisi's nerves and the seat of the soul. Neurosurgery 60:563–568

    PubMed  Google Scholar 

  25. Di Ieva A, Fathalla H, Cusimano MD, Tschabitscher M (2015) The indusium griseum and the longitudinal striae of the corpus callosum. Cortex 62:34–40

    Article  PubMed  Google Scholar 

  26. Sidman RL, Rakic P (1982) Development of the human central nervous system. In: Haymaker W, Adams RD (eds). Histology and histopathology of the nervous system. Thomas, Springfield, Ill, pp 3-145

  27. Smith GE (1897) The relation of the fornix to the margin of the cerebral cortex. J Anat Physiol 32:23–58

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kier EL, Fulbright RK, Bronen RA (1995) Limbic lobe embryology and anatomy: dissection and MR of the medial surface of the fetal cerebral hemisphere. AJNR Am J Neuroradiol 16:1847–1853

    CAS  PubMed  Google Scholar 

  29. Bayer S, Altman J (2007) Atlas of the human central nervous system development. CRC press

  30. Li LX, Zhou WB, Tao Z et al (2010) Effect of FAM172A protein on apoptosis and proliferation in HEK293 cells. Zhonghua Yi Xue Za Zhi 90:2424–2427

    CAS  PubMed  Google Scholar 

  31. Olah J, Vincze O, Virok D et al (2011) Interactions of pathological hallmark proteins: tubulin polymerization promoting protein/p25, beta-amyloid, and alpha-synuclein. J Biol Chem 286:34088–34100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suzuki N, Ando S, Sumida K, Horie N, Saito K (2011) Analysis of altered gene expression specific to embryotoxic chemical treatment during embryonic stem cell differentiation into myocardiac and neural cells. J Toxicol Sci 36:569–585

    Article  CAS  PubMed  Google Scholar 

  33. Fan Y, Chen J, Ye J, Yan H, Cai Y (2014) Proteinase-activated receptor 2 modulates corticotropin releasing hormone-induced brain-derived neurotrophic factor release from microglial cells. Cell Biol Int 38:92–96

    Article  CAS  PubMed  Google Scholar 

  34. Lee SL, Thomas P, Fenech M (2014) Extracellular amyloid beta 42 causes necrosis, inhibition of nuclear division, and mitotic disruption under both folate deficient and folate replete conditions as measured by the cytokinesis-block micronucleus cytome assay. Environ Mol Mutagen 55:1–14

    Article  PubMed  Google Scholar 

  35. Sun P, Li X, Chen C et al (2014) Activating transcription factor 4 modulates BDNF release from microglial cells. J Mol Neurosci 52:225–230

    Article  CAS  PubMed  Google Scholar 

  36. Zhang F, Yao SY, Whetsell WO Jr, Sriram S (2013) Astrogliopathy and oligodendrogliopathy are early events in CNS demyelination. Glia 61:1261–1273

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Dr. Fabio Triulzi. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. This study has received funding by the Italian Ministry of Health to Dr. Arrigoni (RC2012) and Dr. Borgatti. No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: retrospective, cross sectional study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Arrigoni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 946 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arrigoni, F., Romaniello, R., Peruzzo, D. et al. Aberrant supracallosal longitudinal bundle: MR features, pathogenesis and associated clinical phenotype. Eur Radiol 26, 2587–2596 (2016). https://doi.org/10.1007/s00330-015-4084-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-4084-6

Keywords

Navigation