Skip to main content
Log in

Cardiac index after acute ST-segment elevation myocardial infarction measured with phase-contrast cardiac magnetic resonance imaging

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Phase-contrast CMR (PC-CMR) might provide a fast and robust non-invasive determination of left ventricular function in patients after ST-segment elevation myocardial infarction (STEMI).

Methods

Cine sequences in the left-ventricular (LV) short-axis and free-breathing, retrospectively gated PC-CMR were performed in 90 patients with first acute STEMI and 15 healthy volunteers. Inter- and intra-observer agreement was determined. The correlations of clinical variables (age, gender, ejection fraction, NT pro-brain natriuretic peptide [NT-proBNP] with cardiac index (CI) were calculated.

Results

For CI, there was a strong agreement of cine CMR with PC-CMR in healthy volunteers (r: 0.82, mean difference: -0.14 l/min/m2, error ± 23 %). Agreement was lower in STEMI patients (r: 0.61, mean difference: -0.17 l/min/m2, error ± 32 %). In STEMI patients, CI measured with PC-CMR showed lower intra-observer (1 % vs. 9 %) and similar inter-observer variability (9 % vs. 12 %) compared to cine CMR. CI was significantly correlated with age, ejection fraction and NT-proBNP values in STEMI patients.

Discussion

The agreement of PC-CMR and cine CMR for the determination of CI is lower in STEMI patients than in healthy volunteers. After acute STEMI, CI measured with PC-CMR decreases with age, LV ejection fraction and higher NT-proBNP.

Key Points

Cine CMR and PC-CMR correlate well in healthy volunteers.

Agreement is lower in STEMI patients.

Cardiac Output should be measured with one method longitudinally.

Cardiac output decreases with age after myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACC:

American College of Cardiology

BMI:

Body mass index

Bpm:

Beat per minute

BSA:

Body surface area

CMR:

Cardiovascular magnetic resonance

CI:

Cardiac index

cTnT:

Cardiac Troponin T

ECG:

Electrocardiogram

eGFR:

Estimated glomerular filtration rate

ESC:

European Society of Cardiology

HR:

Heart rate

IQR:

Interquartile range

LE:

Late enhancement

EF:

Ejection fraction

NT-proBNP:

N-terminal pro-B-type natriuretic peptide

NYHA:

New York Heart Association

PC:

Phase-contrast

PSIR:

Phase-sensitive inversion recovery

p-PCI:

Primary percutaneous coronary intervention

SD:

Standard deviation

STEMI:

ST-segment elevation myocardial infarction

SV:

Stroke volume

References

  1. Carlsson M, Andersson R, Bloch KM et al (2012) Cardiac output and cardiac index measured with cardiovascular magnetic resonance in healthy subjects, elite athletes and patients with congestive heart failure. J Cardiovasc Magn Reson 14:51

    Article  PubMed  PubMed Central  Google Scholar 

  2. Klug G, Metzler B (2013) Assessing myocardial recovery following ST-segment elevation myocardial infarction: short- and long-term perspectives using cardiovascular magnetic resonance. Expet Rev Cardiovasc Ther 11:203–219

    Article  CAS  Google Scholar 

  3. Wong DT, Leong DP, Weightman MJ et al (2014) Magnetic resonance-derived circumferential strain provides a superior and incremental assessment of improvement in contractile function in patients early after ST-segment elevation myocardial infarction. Eur Radiol 24:1219–1228

    Article  PubMed  Google Scholar 

  4. Lee VS, Spritzer CE, Carroll BA et al (1997) Flow quantification using fast cine phase-contrast MR imaging, conventional cine phase-contrast MR imaging, and Doppler sonography: in vitro and in vivo validation. AJR Am J Roentgenol 169:1125–1131

    Article  CAS  PubMed  Google Scholar 

  5. Lew CD, Alley MT, Bammer R et al (2007) Peak velocity and flow quantification validation for sensitivity-encoded phase-contrast MR imaging. Acad Radiol 14:258–269

    Article  PubMed  PubMed Central  Google Scholar 

  6. Beerbaum P, Korperich H, Gieseke J et al (2005) Blood flow quantification in adults by phase-contrast MRI combined with SENSE--a validation study. J Cardiovasc Magn Reson 7:361–369

    Article  PubMed  Google Scholar 

  7. Lotz J, Meier C, Leppert A et al (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22:651–671

    Article  PubMed  Google Scholar 

  8. Hundley WG, Li HF, Hillis LD et al (1995) Quantitation of cardiac output with velocity-encoded, phase-difference magnetic resonance imaging. Am J Cardiol 75:1250–1255

    Article  CAS  PubMed  Google Scholar 

  9. Traber J, Wurche L, Dieringer MA et al. (2015) Real-time phase contrast magnetic resonance imaging for assessment of haemodynamics: from phantom to patients. Eur Radiol. doi:10.1007/s00330-015-3897-7

  10. Rominger MB, Dinkel HP, Bachmann GF (2002) Comparison between fast MR flow quantification in breathhold technique in ascending aorta and pulmonary trunc with right and left ventricular cine-MRI for the assessment of stroke volumes in healthy volunteers. RoFo 174:196–201

    Article  CAS  PubMed  Google Scholar 

  11. Beerbaum P, Barth P, Kropf S et al (2009) Cardiac function by MRI in congenital heart disease: impact of consensus training on interinstitutional variance. J Magn Reson Imaging 30:956–966

    Article  PubMed  Google Scholar 

  12. Bolen MA, Setser RM, Gabriel RS et al (2013) Effect of protocol choice on phase contrast cardiac magnetic resonance flow measurement in the ascending aorta: breath-hold and non-breath-hold. Int J Card Imaging 29:113–120

    Article  Google Scholar 

  13. Prowle JR, Molan MP, Hornsey E et al (2012) Measurement of renal blood flow by phase-contrast magnetic resonance imaging during septic acute kidney injury: a pilot investigation. Crit Care Med 40:1768–1776

    Article  PubMed  Google Scholar 

  14. Nogami M, Ohno Y, Koyama H et al (2009) Utility of phase contrast MR imaging for assessment of pulmonary flow and pressure estimation in patients with pulmonary hypertension: comparison with right heart catheterization and echocardiography. J Magn Reson Imaging 30:973–980

    Article  PubMed  Google Scholar 

  15. Steeden JA, Atkinson D, Hansen MS et al (2011) Rapid flow assessment of congenital heart disease with high-spatiotemporal-resolution gated spiral phase-contrast MR imaging. Radiology 260:79–87

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kramer CM, Barkhausen J, Flamm SD et al (2008) Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols. J Cardiovasc Magn Reson 10:35

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gatehouse PD, Rolf MP, Graves MJ et al (2010) Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson 12:5

    Article  PubMed  PubMed Central  Google Scholar 

  18. Giese D, Haeberlin M, Barmet C et al (2012) Analysis and correction of background velocity offsets in phase-contrast flow measurements using magnetic field monitoring. Magn Reson Med 67:1294–1302

    Article  PubMed  Google Scholar 

  19. Kilner PJ, Gatehouse PD, Firmin DN (2007) Flow measurement by magnetic resonance: a unique asset worth optimising. J Cardiovasc Magn Reson 9:723–728

    Article  PubMed  Google Scholar 

  20. Setser RM, Fischer SE, Lorenz CH (2000) Quantification of left ventricular function with magnetic resonance images acquired in real time. J Magn Reson Imaging 12:430–438

    Article  CAS  PubMed  Google Scholar 

  21. Feng L, Srichai MB, Lim RP et al (2013) Highly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE. Magn Reson Med 70:64–74

    Article  PubMed  Google Scholar 

  22. Vincenti G, Monney P, Chaptinel J et al (2014) Compressed sensing single-breath-hold CMR for fast quantification of LV function, volumes, and mass. JACC Cardiovasc Imaging 7:882–892

    Article  PubMed  Google Scholar 

  23. Alpert JS, Thygesen K, Antman E et al (2000) Myocardial infarction redefined--a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 36:959–969

    Article  CAS  PubMed  Google Scholar 

  24. Mayr A, Mair J, Schocke M et al (2011) Predictive value of NT-pro BNP after acute myocardial infarction: relation with acute and chronic infarct size and myocardial function. Int J Cardiol 147:118–123

    Article  PubMed  Google Scholar 

  25. Mayr A, Klug G, Schocke M et al (2012) Late microvascular obstruction after acute myocardial infarction: relation with cardiac and inflammatory markers. Int J Cardiol 157:391–396

    Article  PubMed  Google Scholar 

  26. Reinstadler SJ, Klug G, Feistritzer HJ et al (2013) Association of copeptin with myocardial infarct size and myocardial function after ST segment elevation myocardial infarction. Heart 99:1525–1529

    Article  CAS  PubMed  Google Scholar 

  27. Klug G, Trieb T, Schocke M et al (2009) Quantification of regional functional improvement of infarcted myocardium after primary PTCA by contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging 29:298–304

    Article  PubMed  Google Scholar 

  28. Beek AM, Kuhl HP, Bondarenko O et al (2003) Delayed contrast-enhanced magnetic resonance imaging for the prediction of regional functional improvement after acute myocardial infarction. J Am Coll Cardiol 42:895–901

    Article  PubMed  Google Scholar 

  29. Bondarenko O, Beek AM, Hofman MB et al (2005) Standardizing the definition of hyperenhancement in the quantitative assessment of infarct size and myocardial viability using delayed contrast-enhanced CMR. J Cardiovasc Magn Reson 7:481–485

    Article  PubMed  Google Scholar 

  30. Nowosielski M, Schocke M, Mayr A et al (2009) Comparison of wall thickening and ejection fraction by cardiovascular magnetic resonance and echocardiography in acute myocardial infarction. J Cardiovasc Magn Reson 11:22

    Article  PubMed  PubMed Central  Google Scholar 

  31. Herold V, Parczyk M, Morchel P et al (2009) In vivo measurement of local aortic pulse-wave velocity in mice with MR microscopy at 17.6 Tesla. Magn Reson Med 61:1293–1299

    Article  PubMed  Google Scholar 

  32. Klug G, Feistritzer HJ, Reinstadler SJ et al. (2014) Association of aortic stiffness with biomarkers of myocardial wall stress after myocardial infarction. Int J Card 173:253–8

  33. Du Bois D, Du Bois EF (1989) A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 5:303–311, discussion 12-3

    PubMed  Google Scholar 

  34. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  CAS  PubMed  Google Scholar 

  35. Critchley LA, Critchley JA (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 15:85–91

    Article  CAS  PubMed  Google Scholar 

  36. Chernobelsky A, Shubayev O, Comeau CR et al (2007) Baseline correction of phase contrast images improves quantification of blood flow in the great vessels. J Cardiovasc Magn Reson 9:681–685

    Article  PubMed  Google Scholar 

  37. Reil JC, Tardif JC, Ford I et al (2013) Selective heart rate reduction with ivabradine unloads the left ventricle in heart failure patients. J Am Coll Cardiol 62:1977–1985

    Article  CAS  PubMed  Google Scholar 

  38. Opdahl A, Ambale Venkatesh B, Fernandes VR et al (2014) Resting heart rate as predictor for left ventricular dysfunction and heart failure: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 63:1182–1189

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bursi F, Enriquez-Sarano M, Nkomo VT et al (2005) Heart failure and death after myocardial infarction in the community: the emerging role of mitral regurgitation. Circulation 111:295–301

    Article  PubMed  Google Scholar 

  40. Gatehouse PD, Keegan J, Crowe LA et al (2005) Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol 15:2172–2184

    Article  PubMed  Google Scholar 

  41. Slotwiner DJ, Devereux RB, Schwartz JE et al (1998) Relation of age to left ventricular function in clinically normal adults. Am J Cardiol 82:621–626

    Article  CAS  PubMed  Google Scholar 

  42. Kuikka JT, Lansimies E (1982) Effect of age on cardiac index, stroke index and left ventricular ejection fraction at rest and during exercise as studied by radiocardiography. Acta Physiol Scand 114:339–343

    Article  CAS  PubMed  Google Scholar 

  43. Chang SA, Choe YH, Jang SY et al (2012) Assessment of left and right ventricular parameters in healthy Korean volunteers using cardiac magnetic resonance imaging: change in ventricular volume and function based on age, gender and body surface area. Int J Card Imaging 28(Suppl 2):141–147

    Article  Google Scholar 

  44. Slotwiner DJ, Devereux RB, Schwartz JE et al (2001) Relation of age to left ventricular function and systemic hemodynamics in uncomplicated mild hypertension. Hypertension 37:1404–1409

    Article  CAS  PubMed  Google Scholar 

  45. Sandstede J, Lipke C, Beer M et al (2000) Age- and gender-specific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging. Eur Radiol 10:438–442

    Article  CAS  PubMed  Google Scholar 

  46. Cain PA, Ahl R, Hedstrom E et al (2009) Age and gender specific normal values of left ventricular mass, volume and function for gradient echo magnetic resonance imaging: a cross sectional study. BMC Med Imaging 9:2

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zimlichman R, Mossinson D, Ovsyshcher IE (1989) Assessment of hemodynamic changes in the early phase of uncomplicated acute myocardial infarction. Int J Cardiol 25:303–311

    Article  CAS  PubMed  Google Scholar 

  48. Bergstra A, Svilaas T, van Veldhuisen DJ et al (2007) Haemodynamic patterns in ST-elevation myocardial infarction: incidence and correlates of elevated filling pressures. Neth Heart J 15:95–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Holland BJ, Printz BF, Lai WW (2010) Baseline correction of phase-contrast images in congenital cardiovascular magnetic resonance. J Cardiovasc Magn Reson 12:11

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pelc NJ, Herfkens RJ, Shimakawa A et al (1991) Phase contrast cine magnetic resonance imaging. Magn Reson Q 7:229–254

    CAS  PubMed  Google Scholar 

  51. Claessen G, Claus P, Delcroix M et al (2014) Interaction between respiration and right versus left ventricular volumes at rest and during exercise: a real-time cardiac magnetic resonance study. Am J Physiol Heart Circ Physiol 306:H816–H824

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Bernhard Metzler. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. This study has received funding by the Austria Society for Cardiology, Innsbruck Medical University and the Hans und Blanca Moser Stiftung.

One of the authors has significant statistical expertise. No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Written informed consent was waived by the Institutional Review Board. Some study subjects or cohorts have been previously reported in MRI, IJC. All patients have been studied within the MARINA-STEMI registry at the Medical University of Innsbruck. Phase contrast data has not been previously published. Methodology: prospective, observational, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Klug.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klug, G., Reinstadler, S.J., Feistritzer, HJ. et al. Cardiac index after acute ST-segment elevation myocardial infarction measured with phase-contrast cardiac magnetic resonance imaging. Eur Radiol 26, 1999–2008 (2016). https://doi.org/10.1007/s00330-015-4022-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-4022-7

Keywords

Navigation